
ABSTRACT 

SCATTERING AND TRANSMISSION MATRICES FOR THE 

FABRY-PEROT INTERFEROMETER 

by 

C u r t i s L. Harrington 

Fabry-Perot i n t e r f e r o m e t r y concerns l i g h t passage through two 

p a r a l l e l semi-mirrored s u r f a c e s , and the at t e n u a t i o n and transmission 

of the l i g h t based upon i t s wavelength i n r e l a t i o n s h i p to the 

separation of the semi-mirrored s u r f a c e s . Environmental e f f e c t s 

which change the separation between the two p a r a l l e l semi-mirrored 

surfaces can be measured i n d i r e c t l y by observing the c h a r a c t e r i s t i c 

frequencies of l i g h t passing through the in t e r f e r o m e t e r . 

For a constant frequency of l i g h t energy introduced i n t o the 

Fabry-Perot i n t e r f e r o m e t e r , the mir r o r separation i s measured by 

det e c t i n g the amount of l i g h t energy transmitted through or returned 

back i n the d i r e c t i o n of the source. Energy d i f f e r e n c e s of a small 

magnitude r e q u i r e more s o p h i s t i c a t e d detectors to measure a c c u r a t e l y , 

t h e r e f o r e a sensing i n t e r f e r o m e t e r should be able to e x h i b i t 

s i g n i f i c a n t energy changes as the q u a n t i t i e s i t i s to measure change. 

For ease of r o u t i n g an interferometer system, the case where a s i n g l e 

o p t i c f i b e r i s used to transmit l i g h t i n t o , and re c e i v e l i g h t from 

the Fabry-Perot interfe rometer along the same path, i s of i n t e r e s t . 



The transmission matrix, d e r i v a b l e from the s c a t t e r i n g matrix, 

i s most u s e f u l i n the c h a r a c t e r i z a t i o n of the i n t e r f e r o m e t r i c sensor, 

and has p h y s i c a l meaning with respect to the processes o c c u r r i n g i n 

the sensor. In a d d i t i o n , the transmission and s c a t t e r i n g matrix 

c h a r a c t e r i z a t i o n s i l l u s t r a t e the energy and phase r e l a t i o n s h i p s of 

the i n t e r f e r o m e t e r without regard to the types of m a t e r i a l s employed 

i n i t s c o n s t r u c t i o n . 
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CHAPTER 1 

INTRODUCTION TO THE FABRY-PEROT 

A plane m i r r o r i s defined as a m a t e r i a l having an extremely 

smooth surface which can both transmit and r e f l e c t o p t i c a l energy. 

In i t s simplest form, i t can be considered much l i k e a g l a s s window 

which r e f l e c t s a p o r t i o n of the l i g h t i n c i d e n t upon i t , and transmits 

the remainder. T y p i c a l l y the mi r r o r used w i l l have a coating to 

increase i t s r e f l e c t i v i t y . 

Of p a r t i c u l a r i n t e r e s t i s a system whereby two p a r t i a l l y 

t r a n s m i t t i n g m i r r o r s are placed a f i n i t e distance apart. L i g h t 

introduced through these m i r r o r s i s attenuated based upon the 

frequency components w i t h i n the l i g h t beam. The operation of the 

Fabry-Perot interferometer i s the most exemplary example of such a 

system. 

The Fabry-Perot interferometer g e n e r a l l y allows l i g h t waves 

having a wavelength c h a r a c t e r i s t i c which i s some m u l t i p l e of the 

distance between the plane m i r r o r s to propagate completely through 

the two-mirror system. L i g h t waves having a wavelength 

c h a r a c t e r i s t i c not a m u l t i p l e of the mir r o r spacing are s i g n i f i c a n t l y 

attenuated. The space of separation between the two plane m i r r o r s , 

o f t e n r e f e r r e d to as a resonant c a v i t y , a c t s as a f i l t e r . 

1 



Figure l . l . Perspective View of the Fabry-Perot Interferometer 



L i k e a l l r e a l i z a b l e f i l t e r s , the passband-stopband boundary i s 

not abrupt, but forms a smooth t r a n s i t i o n . In a d d i t i o n , the l i g h t 

energy introduced i n t o the interferometer i s attenuated based upon 

i t s wavelength/frequency composition c h a r a c t e r i s t i c s , as w e l l as the 

degree of r e f l e c t i v i t y of the plane m i r r o r s employed. 

R e f e r r i n g to Figure 1, a Fabry-Perot interferometer c o n s i s t s of 

a m i r r o r 1 and a m i r r o r 2 o r i e n t e d i n a mutually p a r a l l e l f a s h i o n , 

separated by a distance L. L i g h t f a l l i n g on m i r r o r 1, propagating i n 

the d i r e c t i o n of m i r r o r 2, w i l l be p a r t i a l l y r e f l e c t e d back to the 

l e f t and p a r t i a l l y t ransmitted i n t o the L width c a v i t y between 

mi r r o r s 1 and 2. The l i g h t w i t h i n the c a v i t y propagating to the 

r i g h t then f a l l s upon mir r o r 2, which i s p a r t i a l l y r e f l e c t e d back 

toward m i r r o r 1, and p a r t i a l l y transmitted through and to the r i g h t 

of m i r r o r 2. The l i g h t propagating back toward mi r r o r 1 i s again 

p a r t i a l l y r e f l e c t e d back i n t o the i n t e r s t i t i a l c a v i t y to the r i g h t 

and p a r t i a l l y t ransmitted back through and away from mi r r o r 1 to the 

l e f t . The l i g h t i n the i n t e r s t i t i a l space between mirror 1 and 

m i r r o r 2 continues to p a r t i a l l y r e f l e c t w i t h i n and p a r t i a l l y transmit 

through the m i r r o r s to the o u t s i d e . 

The " m i r r o r s " of Figure 1 are i d e a l i z e d as very t h i n m i r r o r s . 

This i s e s p e c i a l l y true f o r the treatment h e r e i n . By the use of the 

term " m i r r o r , " a p a r t i a l l y r e f l e c t i n g and p a r t i a l l y t r a n s m i t t i n g 

surface i s i n d i c a t e d . Such a m i r r o r may have a r e f l e c t i v i t y , the 

percentage amplitude of l i g h t r e f l e c t e d to t o t a l l i g h t impinging a 

s u r f a c e , of from 0 to 1, but p r e f e r a b l y somewhere i n between. 



The m i r r o r s commonly encountered have a mirrored surface a p p l i e d 

to a t h i c k d i e l e c t r i c . The t h i c k d i e l e c t r i c , u s u a l l y g l a s s , i s f o r 

the purpose of support. I t w i l l be c l e a r from the f o l l o w i n g 

d i s c u s s i o n that a " t h i c k " d i e l e c t r i c surface m i r r o r would form i t s 

own smaller Fabry-Perot i n t e r f e r o m e t e r , thus complicating the 

problem, and i t s ease of understanding. 

However, a t h i n surface i s achievable. In some cases a polished 

mirrored surface can be a p p l i e d to the end of a f i b e r o p t i c c a b l e . 

The m a t e r i a l a p p l i e d to the d i e l e c t r i c surface can be by vapor 

d e p o s i t i o n , and would be only a few molecular l a y e r s t h i c k . Such a 

d e p o s i t i o n technique allows q u a n t i t a t i v e l y t i g h t e r c o n t r o l over the 

r e f l e c t i v i t y . 

In the case of a r e f l e c t i v e m a t e r i a l a p p l i e d to a c l e a r 

d i e l e c t r i c , the change i n propagation medium from a c l e a r d i e l e c t r i c 

to an a i r c a v i t y would cause a very small e r r o r . Propagation from a 

c l e a r d i e l e c t r i c to a d i e l e c t r i c c a v i t y , of course, would cause, the 

l e a s t e r r o r . U t i l i z a t i o n of a d i e l e c t r i c or other s o l i d m a t e r i a l i n 

the i n t e r s t i t i a l c a v i t y would probably severely l i m i t design of the 

c a v i t y housing. 

But i t i s the geometry of and m a t e r i a l s of c o n s t r u c t i o n of the 

housing around the c a v i t y which i s of great i n t e r e s t i n u t i l i z i n g the 

Fabry-Perot interferometer as a sensor. The parameter sensed i s 

u s u a l l y the dimension L, the separation between the m i r r o r s . 

Depending upon the c o n s t r u c t i o n , Fabry-Perot interferometers can be 

made to sense temperature and pressure. The Fabry-Perot i s most 

f u l l y modeled as a two p o r t , flow through f i l t e r where a s i g n a l i s 



introduced at the f i r s t port and detected as i t comes out of the 

second p o r t . Given the r e a l l i m i t a t i o n s of sensor i n s t a l l a t i o n , i t 

would be optimum to have a sensor at the end of a s i n g l e f i b e r rather 

than having a sensor located at the center a loop formed by the 

t r a n s m i t t e r f i b e r , the sensor, and the r e c e i v e r f i b e r . In such a 

s i n g l e f i b e r system, mi r r o r 2 would be t o t a l l y r e f l e c t i n g w i t h 

respect to the i n t e r s t i t i a l c a v i t y , no l i g h t would enter the c a v i t y 

from the outside through m i r r o r 2, and the s i n g l e f i b e r would form 

the conduit f o r l i g h t energy both to and from the Fabry-Perot sensor. 

The F r e s n e l Formula 

The F r e s n e l formulae define the basic i n t e r a c t i o n between l i g h t 

and a r e l a t i v e l y transparent d i e l e c t r i c boundary. When an 

electromagnetic wave impinges a d i e l e c t r i c boundary, part of wave 

continues through the m a t e r i a l , and part of the wave i s r e f l e c t e d . 

Due to the c o n t i n u i t y of the e l e c t r i c , or E f i e l d at the boundary, 

the r e f l e c t e d wave must have i t s magnetic, or H f i e l d reversed. This 

i s because Maxwell's equations d i c t a t e that f o r an e l e c t r i c f i e l d 

p o i n t i n g i n one d i r e c t i o n w h i l e propagating i n second d i r e c t i o n f i x e s 

the d i r e c t i o n of the magnetic f i e l d e x a c t l y . 

Figure 2 i l l u s t r a t e s the r e l a t i v e orthagonal r e l a t i o n s h i p 

between the e l e c t r i c f i e l d , E, and the magnetic f i e l d H, as i t 

approaches a d i e l e c t r i c s u r f a c e . The e l e c t r i c , or E f i e l d i s shown 

to be continuous at a boundary. For a wave emanates from the 

boundary i n the opposite d i r e c t i o n , given that the E f i e l d i s 

continuous at the boundary, the H f i e l d must be considered to change 

i t s o r i e n t a t i o n to maintain consistency with the coordinate system. 
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Figure 1.2. Electromagnetic Fields at a D i e l e c t r i c Boundary 



As a r e s u l t of the above r e l a t i o n s h i p s , two important equations 

r e s u l t : 

Ex = E+e-aze-JBz + E"e+aze+JBz ( i . i ) 

Hy = H+e-aze-jBz ^ H-e+^Ze+jBz (1.2) 

In equations (1.1) and (1.2), Ex i s the x component of the E 

f i e l d , Hy i s the y component of the H f i e l d associated w i t h Ex, and 

where the exponents r e l a t e to propagation i n the p o s i t i v e z d i r e c t i o n 

f o r a negative exponent and propagation i n the negative z d i r e c t i o n 

f o r a p o s i t i v e exponent. 

These equations lead to a v i s u a l l y more i d e n t i f i a b l e expression: 

Here the s u b s c r i p t s stand f o r the i n c i d e n t , r e f l e c t e d and 

transmitted f i e l d s . Given that the i n t r i n s i c impedance N f o r any 

region i s the r a t i o of the Ex f i e l d d i v i d e d by the Hy f i e l d , and 

using the second of the above equations, w i t h the i n c i d e n t wave i n 

zone 1 and w i t h the transmitted wave i n zone 2, y i e l d s the f o l l o w i n g : 

E i + Ej- = (1.3) 

(1.4) 

E E 
Ni = x i (1.5) N2 = xt (1.6) 

H yt 
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E E 
Hyi = X i (1.7) Hyt = xt (1.8) 

Ni N2 

U t i l i z i n g equations (1.7) and (1.8) i n t o (1.4) above y i e l d s 

E x i - Exr = Ext (1.9) 

Ni Ni N2 

Sol v i n g f o r the r e f l e c t i o n c o e f f i c i e n t y i e l d s : 

r = = N2 - Nj (i.io) 
E i Ni + N2 

S i m i l a r l y , s o l v i n g f o r the transmission c o e f f i c i e n t , t , y i e l d s : 

t = 2 ^ = 2N2 ( l a i ) 
E i Ni + N2 

These are the most recognizable forms of t h i s r e l a t i o n s h i p . 

From equation 1.10, i t i s evident that the s i g n of the r e f l e c t i o n 

c o e f f i c i e n t i s e i t h e r p o s i t i v e or negative depending upon whether the 

electromagnetic wave propagates from a l e s s dense (higher N) to a 

more dense (lower N) region or from a more dense to a l e s s dense 

reg i o n . 

Looking at i t another way, f o r an i n c i d e n t wave having a phase 

of +1, the r e f l e c t e d wave could have a phase of - f l or -1, depending 

upon whether or not the propagation was from a region of given 

density i n t o a r e l a t i v e l y more dense or a r e l a t i v e l y l e s s dense 

region. 



Remember that " t " and " r " are not the energies of the l i g h t 

t r ansmitted and r e f l e c t e d , but represent the amplitudes of the 

l i g h t . For example, a l i g h t wave having an amplitude of 1 t r a v e l l i n g 

i n g l a s s would have an amplitude of greater than 1 i f i t traversed 

the g l a s s - a i r boundary and continued i t s propagation i n t o the a i r 

r e g i o n . This i s evident from equation (1.11) when N2 has a value i n 

a i r of about 377, and when has a value i n a p a r t i c u l a r g l a s s of 

about 251. 

However, " r " and " t " are r e l a t e d to energy. The square of " r " 

y i e l d s the percent energy r e f l e c t e d . U n i t y , or 1, minus the value of 

" t " squared y i e l d s the percent energy t r a n s m i t t e d . Therefore, a 

matrix allows handling of amplitudes, phases, and, with the above 

r e l a t i o n s h i p s , energy. 



Figure 2.1. Generalized Scattering Matrix Representation 



CHAPTER 2 

SCATTERING PARAMETERS GENERALLY 

The relationship between a plane mirror and optical energy lends 

itself to analysis based upon the use of scattering parameters. As 

is shown in Figure 2.1, a box defines a network, or some spatial 

entity. Energy can flow into the box or exit the box from the left 

hand side, port 1, and energy can flow into the box or exit the box 

from the right hand side, port 2. A mixed designation is utilized 

wherein the a^ represents energy into port 1, bj represents energy 

out of port 1. Similarly, a2 represents energy into port 2, and b2 

represents energy out of port 2. 

The matrix is usually written in the following form: 

bl 

b2 

Sll Si2 

^21 S22 32 

(2.1) 

Where: 

Sll 

(a2=0) 

bl 

a i 

S22 

(ai=0) 

b2 

32 

S12 = bl 

(ai=0) 32 

S2I 

(a2=0) 

b2 

a i 

11 
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Therefore, each "cell" or position in the matrix governs a 

relationship between a different two of the entering and leaving 

amplitude relationships for the two port. The matrix representation 

lends better lends itself to a make sense description of what is 

going on in the two port system. This is especially true since the 

matrix operates upon inputs to produce outputs. It is easy to see 

how individual inputs could be masked or omitted, and the effect such 

omission has on the output quantities. 

The letters a and b represent the amplitude of the 

electromagnetic wave entering and leaving the two port network, 

respectively. The "1" subscript indicates the left side boundary and 

the "2" subscript indicates the right side boundary. The energy 

within a wave is equal to the square of the amplitude. The square of 

any of the scattering matrix coefficients yields the corresponding 

energy in the wave. This relation parallels the scattering matrix 

elements relationship to energy. The square of a matrix element will 

yield the portion of energy reflected or the complement from unity of 

the portion of the energy transmitted. 

Fabry-Perot Scattering Considerations 

Figure 2.2 illustrates the Fabry-Perot system existing within 

the two mirrors which were previously shown in Figure 1. Figure 2.2, 

utilizing a zig-zag representation of the multiple light reflections, 

shows how each light beam has a portion of its energy reflected 

within and a portion transmitted outside of the mirror boundaries. 

In a physical sense, as shown in Figure 2.2, a light wave 

entering from the left is partially reflected back to the source by 
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Figure 2.2. Diagram of Multiple Fabry-Perot Reflection 
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mirror 1. The part which is not reflected is transmitted into the 

middle or interstitial volume between mirrors 1 and 2. As the 

transmitted wave continues to the right, i t arrives at mirror 2. 

Here, similar to the case of the approaching wave with respect to 

mirror 1, part of the light wave is reflected back in the direction 

of mirror 1 while part is transmitted through and to the right of 

mirror 2. 

The light wave reflected back in the direction of mirror 1 is 

again partially reflected back in the direction of mirror 2, and 

partially transmitted back through mirror 1. This process, involving 

each residual reflected light wave in the interstitial area, 

continues in an infinite manner. Intuitively, the amount of light 

reflectively propagating between mirrors 1 and 2 will depend upon the 

reflectivity of the two boundaries. 

Considering a beam of light entering the arrangement of Figure 3 

from the left , the amount of total light propagating between the 

mirrors can be calculated from the infinite series resulting from the 

infinite numbers of reflections resulting between the mirrors. This 

quantity is key to further analysis of the two mirror system. For 

illustration only. Figure 2.2 shows a zig-zag line to enable view of 

subsequent internal reflections. Although such a system could be 

utilized and computed using the law of cosines to extract the 

horizontal portion of the wave, further analysis will be based upon 

an in line, here shown as horizontal, system to obviate the need for 

angular considerations. Next, rules for treating the reflective and 

transmissive propagation of an electromagnetic wave are examined. 
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Figure 2.3. Scattering in a Thin Dielectric 



The Scattering Matrix for a Thin Dielectric 

Before analysis of the Fabry-Perot system, the characterization 

of what occurs regarding a light wave on reflection from and 

transmission through a mirror, and propagation through space, will 

need some explanation. Several properties may be assumed which will 

govern these characteristics, including reciprocity and conservation 

of energy. If mirrors 1 and 2 are both identically flat on both 

sides, each mirror will react to approaching light energy from one 

direction exactly just as i t would to another direction. 

In the specific case of light propagating in air toward a 

dielectric surface, the reflection coefficient gamma will be 

negative. The amount of mirroring on the surface of the dielectric 

will control the magnitude of the reflection coefficient, regardless 

of the side from which the surface of the dielectric is approached. 

For a single mirror, a two port analysis would have S12 

represent the energy in region 1 due to energy inputs from region 2, 

while S21 represents the energy in region 2 due to input from region 

1. Based upon experience and arbitrary reversibility of any given 

mirror, i t is intuitive that S12 = S21. Similarly S^ represents the 

energy in region 1 due to energy inputs from region 1, while S22 

represents the energy in region 2 due to input from region 2. Again 

reversibility of any given mirror leads to the observation that S^ = 

S22. 

As was previously mentioned, the "amplitude" of the light wave 

is related to the power in that the square of the absolute value of 

the amplitude represents the power. Of the power incident from the 
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left, the transmitted and reflected power must add to 100% of that 

power. Similarly, of the power incident from the right, the 

transmitted and reflected power must add to 100% of that power. This 

is also true for any two port system which does not store energy. 

Stated in terms of the scattering parameters, the following equations 

result: 

S l l + S21 = 1 (2.2) 

S22 + S12 = 1 (2.3) 

In addition, for a dissipationless network, the absolute value 

of the product of the members of each column must equal zero. Stated 

another way, 

S l l S12 + S21 S22 = 0. (2.4) 

Since the absolute value of one number times another number can 

be can be defined as one of the numbers times the complex conjugate 

of the other number, the above equation (15) can be written: 

S l l * S12 + S21* S22 = 0. (2.5) 
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This leads to the observation that 

Sl2 = -S2I* _!22_ 

S l l * 

(2.6) 

Since Sji = S22> then S12 = -S21 • The only way for this 

relationship to be true is for S12 ^21 to be purely complex 

quantities, that is to be preceded by the complex operator j . S12 is 

the light wave in region 1 from and due to region 2 and S21 is the 

light wave in region 2 from and due to 

region !• Thus S12 and S21 deal with the transmission of light 

across the mirror boundary and will have magnitudes equal to the 

transmission coefficient t, or in the case as here, where t is 

complex, will have magnitudes equal to j t . 

For reflectivity, since the tangential electric fields must 

match at the interface, the phase shift is 180 degrees, causing a 

sign change upon reflection. S^ and S22> the reflection parameters 

of the scattering matrix are each equal to -rj and - r 2 , respectively. 

This results in a generalized scattering matrix for any single, 

very thin mirror, as follows: 

bl 

b2 

-r jt 

jt -r 32 

(2.7) 

This results in a generalized scattering matrix for any single, very 

thin mirror, and can be assumed to be valid for any two port. 
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The Scattering Matrix for a Volume of Space 

Insofar as propagation is concerned, a light wave changes phase 

as i t propagates, as does any other travelling wave. For propagation 

normal to a frame of reference, the phase shift continues according 

to the relationship: 

d = 2 TTf n 1 = 2 TTnl (2.8) 

c X 

where f is the frequency, c is the speed of light in a vacuum, n is 

an integer, 1 is the length traveled, and d is the shorthand 

designation for facilitating the representation of the exponential 

quantity. If 1 is the spacing between the mirrors then 2d represents 

the total round trip distance. The repeatability of this function is 

emphasized by the integer n. The phase of a light wave propagating 

within the system is more fully represented by the quantity 

-j2 TT f n 1/c -jd 
e = e (2.9) 

It is increasingly clear that there is an optimum mirror 

spacing, or path length for a given wavelength of light. Conversely, 

broadband light will have certain of its frequency components 

selectively transmitted or attenuated through the mirrors of the 

Fabry-Perot interferometer based on the relationship of the frequency 

to mirror separation. Figure 2.4 illustrates this spatial 

relationship. 
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- r j a i 

r 2 t i a i e - j 2 d 

j t i a i j t i a i e - J d 

- J r 2 t i a i e J2d - j r 2 t i a i e - J d 

r i r 2 ( j t i a i ) e - J 2 d r i r 2 ( j t i a i ) e - J 2 d e - j d , 

t 2 t i a i e - J ' i 

MIRROR 1 MIRROR 2 

Figure 2.4. Stepwise Representation of Subsequent R e f l e c t i o n s 



The Fabry-Perot S c a t t e r i n g M a t r i x 

R e f e r r i n g to Figure 2.4, the two mi r r o r system of Figure 2.2 i s 

i l l u s t r a t e d without the p o t e n t i a l l y confusing angles. Each arrow 

l e v e l represents a s i n g l e d i r e c t i o n a l event f o r a l i g h t beam. By 

i l l u s t r a t i n g i t t h i s way. Figure 2.4 can be taken step at a time 

i l l u s t r a t i n g the m u l t i p l e r e f l e c t i o n s of a s i n g l e l i g h t beam without 

the confusing angular zig-zags used e a r l i e r to show m u l t i p l e 

r e f l e c t i o n s . In t h i s way both the reduction i n amplitude due to 

m u l t i p l e r e f l e c t i o n s , as w e l l as the change i n phase due to s p a t i a l 

propagation may be i l l u s t r a t e d . Although the mechanism of m u l t i p l e 

r e f l e c t i o n and transmission would occur w i t h a l i g h t beam of a non-

normal angle between two d i e l e c t r i c s , a Fabry-Perot w i l l t y p i c a l l y 

u t i l i z e l i g h t at normal i n c i d e n c e . 

Each subsequent l e v e l represents a d i f f e r e n t point i n time of 

the l i f e of the beam due to r e f l e c t i v i t y from a surface due to the 

a c t i o n of the beam above i t . As i s shown i n Figure 2.4, l i g h t 

e n t e r i n g from the l e f t i s designated as a j , t h i s designation 

i n d i c a t i v e of the "amplitude" of the l i g h t wave. L i g h t l e a v i n g the 

system and propagating to the l e f t i s designated b j . L i g h t l e a v i n g 

the system at the r i g h t hand boundary i s designated b2, while l i g h t 

e n t e r i n g the system from the r i g h t i s designated a2« This symbols 

used are i n general agreement w i t h standard s c a t t e r i n g parameter 

n o t a t i o n . 

As p r e v i o u s l y discussed, l i g h t r e f l e c t i n g from a surface has i t s 

amplitude and phase m u l t i p l i e d by - r , the r e f l e c t i v i t y c o e f f i c i e n t 

f o r that surface representing a diminution i n amplitude and a 180 
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degree phase change represented by the negative s i g n . L i g h t 

transmitted through a surface has i t s amplitude and phase m u l t i p l i e d 

by j t , the transmission c o e f f i c i e n t f o r that surface representing 

e i t h e r an increase or a diminution i n amplitude and the j i n d i c a t i v e 

of a 90 degree phase change. 

In Figure 2.4, a l l arrows p o i n t i n g to the l e f t of and away from 

m i r r o r 1 c o n t r i b u t e to b^ while a l l arrows p o i n t i n g to the r i g h t of 

and away from mi r r o r 2 c o n t r i b u t e to b2. At the upper l e f t hand 

corner, a beam of l i g h t represented by a j enters from the l e f t and 

impinges upon mir r o r 1. This beam of l i g h t i s p a r t i a l l y r e f l e c t e d 

away from and to the l e f t of m i r r o r 1 and m u l t i p l i e d by a f a c t o r - r j . 

The r e s u l t i n g l e f t w a r d propagating l i g h t beam has a t o t a l amplitude 

equal to - r j a i . 

The other p o r t i o n of t h i s l i g h t beam a j reaching the 

i n t e r s t i t i a l space between the m i r r o r s , and at a point just to the 

r i g h t of m i r r o r 1, i s m u l t i p l i e d by j t j and has a t o t a l amplitude 

represented by the product j t i a j . As the l i g h t beam t r a v e l s from a 

point j u s t to the r i g h t of m i r r o r 1 to a point j u s t to the l e f t of 

m i r r o r 2, a phase change occurs. This phase change i s dependent upon 

the length of separation between m i r r o r s 1 and 2. This phase change 

i s represented by a m u l t i p l i c a t i v e f a c t o r of e"J^. The r e s u l t s i n an 

expression f o r the l i g h t wave at t h i s point euqal to the 

m u l t i p l i c a t i v e product of j t ^ a j e ^ J ^ . 

Once the l i g h t wave impinges upon m i r r o r 2, part of the l i g h t 

wave i s transmitted through m i r r o r 2, l e a v i n g to the r i g h t of Figure 

5, and takes on the a d d i t i o n a l f a c t o r j t 2 . The r e s u l t i n g expression 
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f o r t h i s part of b2 i s j t 2 J t i a i e which, u t i l i z i n g the 

r e l a t i o n s h i p j 2 = -1, reduces to - t 2 t i ' a i e ~ J ^ . The p o r t i o n of the 

l i g h t wave r e f l e c t e d from mi r r o r 2 beginning i t s propagation back to 

mir r o r 1 takes on the a d d i t i o n a l f a c t o r of - r 2 * The expression f o r 

t h i s p o r t i o n of the i n t e r n a l wave j u s t to the l e f t of mirror 2 i s -

j r 2 ( t i ) a i e " " J ^ . As the - j r 2 t i a i e ~ J ^ l i g h t wave propagates to the 

l e f t , toward m i r r o r 1, a phase change occurs by the f a c t o r e^J^. The 

m u l t i p l i c a t i v e a d d i t i o n of t h i s f a c t o r y i e l d s an expression f o r the 

l i g h t wave at a point j u s t to the r i g h t of mir r o r 1 equal to 

- j r 2 t i a i e ' " 2 j d ^ 

Repeating the process once mir r o r 1 i s reached, once the l i g h t 

wave impinges upon m i r r o r 1, part of the l i g h t wave i s transmitted 

through m i r r o r 1, l e a v i n g to the l e f t of Figure 2.4, and takes on the 

a d d i t i o n a l f a c t o r j t ^ . The r e s u l t i n g expression f o r t h i s part of bj 

i s - j 2 r 2 ( t i ) 2 a j e " " 2 j d ^ which reduces to r 2 ( t i ) 2 a j e " 2 J ^ . The p o r t i o n 

of the l i g h t wave r e f l e c t e d from mi r r o r 1 beginning i t s propagation 

back to mi r r o r 2 takes on the a d d i t i o n a l f a c t o r of - r ^ . The 

expression f o r t h i s p o r t i o n of the i n t e r n a l wave j u s t to the l e f t of 

mi r r o r 1 i s j r i r 2 t i a i e " 2 j d . For c l a r i t y t h i s may be w r i t t e n as 

r i r 2 ( j t i a i ) e ' " 2 j d ^o i l l u s t r a t e that but f o r the l e f t hand r i r 2 f a c t o r 

and the r i g h t hand 
e-2jd 

f a c t o r the k e r n e l j t j a ^ i s the same as the 

previous s t a r t i n g point j u s t to the r i g h t of mir r o r 1. An a d d i t i o n a l 

m u l t i p l i c a t i v e f a c t o r of r i r 2 e ~ 
2jd 

w i l l repeat f o r each round t r i p , 

reducing the magnitude of each successive term. Since l i g h t 

approaching m i r r o r 2 ac t s e s s e n t i a l l y the same, the same r e s u l t would 

apply f o r a l i g h t wave a2 ent e r i n g from the l e f t . 
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Even though each subsequent l e v e l represents a d i f f e r e n t point 

i n time of the l i f e of the beam due to r e f l e c t i v i t y from a surface 

due to the a c t i o n of the beam above i t , i t would be h e l p f u l to t r e a t 

the Fabry-Perot interferometer i n steady s t a t e , t a k i n g to account a l l 

subsequent r e f l e c t i o n s . Since m u l t i p l e s of t h i s f a c t o r w i l l be 

m u l t i p l i c a t i v e l y f a c t o r e d i n t o the expreission f o r each round t r i p , 

and i t continues to do so on a steady s t a t e b a s i s , a steady-state 

summation of the f a c t o r s can be formulated. 

The same set of r e f l e c t i v i t i e s and distance phase s h i f t s are 

m u l t i p l i c a t i v e l y included as an a d d i t i o n to the t o t a l number of 

m u l t i p l i c a t i v e products i n the expression. By grouping each 

r e c u r r i n g set s e p a r a t e l y , a summation, d e s c r i b i n g each l i g h t beam i n 

f i g u r e 2.4 can be formulated. 

However, to in s u r e that a complete round t r i p f o r each term i s 

p r e c i s e l y i n c l u d e d , the reference plane which was u t i l i z e d above, and 

which was i n f i n i t e s i m a l l y to the r i g h t of mirror 1, i s s e l e c t e d . The 

t o t a l i n t e r n a l l i g h t beam, which i s the sum of a l l i n t e r n a l l i g h t 

beams propagating to the right i s : 

00 
a (2.10) 

m=0 

where a^ i s the amplitude of the l i g h t beam i n c i d e n t upon the system 

from the l e f t . This expression i s exactly equal to the f o l l o w i n g : 
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j t i a i 

1 - r r e 
1 2 

-j2 d 
(2.11) 

The proof f o r t h i s exact equivalency can be v e r i f i e d by computer 

or from any number of math handbooks. With the t o t a l i n t e r s t i t i a l 

"a" f i e l d determined, a l l other f i e l d s are determinable w i t h 

reference t h e r e t o . The t o t a l i n t e r n a l "b" or l e f t w a r d propagating 

f i e l d w i l l c o n s i s t of the t o t a l i n t e r n a l "a" f i e l d times the 

r e f l e c t i o n c o e f f i c i e n t at m i r r o r 2, namely r 2 , along w i t h the 

appropriate phase f a c t o r f o r the reference p o s i t i o n . The 

i n t e r s t i t i a l "b" f i e l d , again at a reference point j u s t to the r i g h t 

of m i r r o r 1, i s as f o l l o w s : 

j t r -j2d a 
^ 1 2 e ^ 1 
1 - r r -j2d 

12^ 

(2.12) 

A l l of the other q u a n t i t i e s can now be e a s i l y computed with 

respect to equations (2.11) and (2.12). Note f o r emphasis that 

equations (2.11) and (2.12) are the "a" and "b" f i e l d s internal with 

respect to the Fabry-Perot i n t e r f e r o m e t e r , and they are taken not 

everywhere, but at a point j u s t to the r i g h t of mirror 1 as 

p r e v i o u s l y s p e c i f i e d . The external f i e l d s are dependent upon the 

i n t e r n a l f i e l d s as well as reflection from the e x t e r n a l surfaces. 



26 

Next, to construct the s c a t t e r i n g matrix f o r the Fabry-Perot 

system, we w i l l analyze a l i g h t beam ente r i n g at the l e f t , and i t s 

e f f e c t on bj and b2. The f i r s t c o n t r i b u t i o n to b^ comes from the 

r e f l e c t i v i t y of the outside of mi r r o r 1, namely -rj^a]^. L i g h t then 

en t e r i n g the i n t e r s t i t i a l space between m i r r o r s 1 and 2 i s j t ^ a i , and 

i t proceeds to form the m u l t i p l e r e f l e c t i o n s r e f e r r e d to above. 

For s i m p l i c i t y i t i s advantageous to r e f e r to the t o t a l 

i n t e r s t i t i a l "b" f i e l d due to m u l t i p l e r e f l e c t i o n s at the same 

reference p o i n t , namely j u s t i n f i n i t e s i m a l l y to the r i g h t of mi r r o r 

1. The p o r t i o n of the "b" f i e l d which w i l l propagate back through 

m i r r o r 1 w i l l be m u l t i p l i e d by the "through g l a s s " s c a t t e r i n g 

parameter r e f e r r e d to above as j t j . 

So, m u l t i p l i c a t i v e l y combining the i n t e r s t i t i a l b f i e l d w i t h 

j t ] ^ , and a d d i t i v e l y combining t h i s quantity w i t h the wave r e f l e c t e d 

from the surface of mi r r o r 1 w i l l y i e l d : 

t ^ r - j 2 d 
b i = - r i a i + 1 2 e a i (2.13) 

1 - r r -J2d 
1 2 e 

R e c a l l that a l l r e f l e c t i o n s from m i r r o r 2 i n the d i r e c t i o n of region 

1 were taken to account i n the computation of the t o t a l i n t e r s t i t i a l 

f i e l d s . Continuing, to f u r t h e r s i m p l i f y t h i s r e s u l t , the f i r s t term 

on the r i g h t hand si d e of the equation i s m u l t i p l i e d i n the numerator 

and denominator by the denominator of the i n t e r s t i t i a l "b" f i e l d to 

y i e l d : 
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- r a + r2 r a e-^^^ + r a e'^^^ 
hi = 1 1 1 2 1 1 2 1 (2.1A) 

1 - r r e-J2d 
1 2 

Recognizing the common term f o r the two rightmost q u a n t i t i e s i n 

the numerator y i e l d s : 

- r a + r a e'^^^ ( r ^ + t ^ ) 
b i = 1 1 2_J^ 1 1 (2.15) 

1 - r r e-J2d 
1 2 

Since the square of the r e f l e c t i v i t y i n d i c a t e s r e f l e c t e d energy, 

and the square of the t r a n s m i s s i v i t y i n d i c a t e s transmitted energy, 

and s i n c e the r e f l e c t e d and transmitted energy must sum to u n i t y f o r 

the same reference plane, i . e . r2 + t2 = 1, we then have: 

-j2d 
- r a + r a e 

b i = 1 1 2_1 (2.16) 
1 - r r e-J2d 

1 2 

Fu r t h e r , e x t r a c t i n g the a^ term w i l l b e t t e r i l l u s t r a t e the matrix 

term: 

- r + r e-J2d ^ ^ 
b i = 1 2 a i (2.17) 

1 - r r e-J2d 
1 2 



The above term to the l e f t of the a j term occupies the Sn p o s i t i o n 

i n the s c a t t e r i n g matrix since i t describes the c o n t r i b u t i o n to b^ 

from the a j i n p u t . 

S i m i l a r l y , the b2 term as a f u n c t i o n of a^ can be computed from 

the i n t e r n a l "a" f i e l d of equation (2.11). As discussed above, and 

beginning j u s t to the r i g h t of mi r r o r 1, a f a c t o r of e"Jd w i l l be 

m u l t i p l i e d to reach m i r r o r 2, and a f a c t o r of j t 2 f o r transmission 

through m i r r o r 2, w i l l be a p p l i e d to the t o t a l i n t e r n a l " a" f i e l d of 

equation (2.11). This y i e l d s : 

The j X j f a c t o r forms a -1, and, e x t r a c t i n g the a^ term as was 

done above, reduces equation (2.18) t o : 

b2 = j t j a i j t 2 e-Jd (2.18) 
-j2d 

1 - r r e 
1 2 

b2 = t i t2 e-Jd (2.19) 

The p o r t i o n of the equation to the l e f t of a^ forms element S21 of 

the s c a t t e r i n g matrix, the p o r t i o n of b2 dependent upon a^. 
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The remaining p o r t i o n s of the s c a t t e r i n g matrix, i n c l u d i n g S12 

and S22> i n v o l v e those p o r t i o n s of b]^ and b2 a t t r i b u t a b l e to inputs 

at a2. S i m i l a r to the equations beginning with equation (2.11) and 

(2.12), and e s p e c i a l l y since the Fabry-Perot works the same, no 

matter from which sid e approached, two new equations can be w r i t t e n . 

These two new equations, to show the s i m i l a r i t y between the 

computations above f o r Sn and S21 and those now made f o r S12 and 

S22> w i l l chose a reference point j u s t to the l e f t s ide of mir r o r 2. 

The q u a n t i t i e s referenced to that point w i l l c a r r y a primed 

de s i g n a t i o n . The "a'" f i e l d i s s t i l l propagating to the r i g h t and 

the "b*" f i e l d i s s t i l l propagating to the l e f t . 

b' = j t2 a2 (2.20) 
-j2d 

1 - r r e 
1 2 

With the t o t a l i n t e r s t i t i a l "b*" f i e l d determined, a l l other 

f i e l d s are determinable w i t h reference t h e r e t o . The t o t a l i n t e r n a l 

"a'" or rightward propagating f i e l d w i l l c o n s i s t of the t o t a l 

i n t e r n a l "b'" f i e l d times the r e f l e c t i o n c o e f f i c i e n t at mirror 1, 

namely r j , along w i t h the appropriate phase f a c t o r f o r the reference 

p o s i t i o n . The i n t e r s t i t i a l "a'" f i e l d , again at a reference point 

j u s t to the l e f t of m i r r o r 2, i s as f o l l o w s : 

j t r -j2d a 
^ 2 1 e ^ 2 
1 - r r - j 2 d 

1 2 ^ 

(2.21) 
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The p o r t i o n of b2 a t t r i b u t a b l e to a2, using (31) on the r i g h t s i d e 

i s : 

t2 r -j2d 
b2 = -r2 a2 + 2 1 e a2 (2.22) 

1 - r r -J2d 
1 2 e 

Again c o n t i n u i n g , to f u r t h e r s i m p l i f y t h i s r e s u l t , the f i r s t term on 

the r i g h t hand side of the equation i s m u l t i p l i e d i n the numerator 

and denominator by the denominator of the i n t e r s t i t i a l "a'" f i e l d to 

y i e l d : 

- r a + r2 r a e-^^^ + r a e'^^d 
b2 = 2 2 2 1 2 2 1 2 (2.23) 

1 - r r e-J2d 
1 2 

Again r e c o g n i z i n g the common term f o r the two rightmost q u a n t i t i e s i n 

the numerator y i e l d s : 

-j2 d f 2 . ,2 . 
- r a + r a e - ^ ( r + t ) 

b2 = 2 2 ]^_2 2 2 (2.24) 

1 - r r e-j2d 
1 2 

Again, s i n c e the square of the r e f l e c t i v i t y i n d i c a t e s r e f l e c t e d 

energy, and the square of the t r a n s m i s s i v i t y i n d i c a t e s transmitted 

energy, and s i n c e the r e f l e c t e d and transmitted energy must sum to 

u n i t y f o r the same reference plane, i . e . r ^ + t ^ = 1, we then have: 

-j2d 
- r a + r a e 

b2 = 2 2 \_1 (2.25) 
1 - r r e-j2d 

1 2 
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Again, e x t r a c t i n g the a2 term w i l l b e t t e r i l l u s t r a t e the matrix term: 

- r + r e ^ 
b2 = 2 1 a2 (2.26) 

1 ^ r r e-J2d 
1 2 

The above term to the l e f t of the ai term occupies the S22 p o s i t i o n 

i n the s c a t t e r i n g matrix s i n c e i t describes the c o n t r i b u t i o n to b2 

from the a2 i n p u t . 

S i m i l a r l y , the b^ term of a f u n c t i o n of a2 can be computed from 

the i n t e r n a l "b'" f i e l d of equation (2.20). As discussed above, 

since we, i n the l a t t e r case begin j u s t to the l e f t of mirror 2, the 

f a c t o r of e"Jd w H i be m u l t i p l i e d to the quantity i n equation (2.20). 

Only an a d d i t i o n a l f a c t o r of j t ^ f o r transmission through mirror 1, 

w i l l need be a p p l i e d to the t o t a l i n t e r n a l '^b'" f i e l d of equation 

(2.20). This y i e l d s : 

b l = J t i a2 j t 2 e-Jd (2.27) 

-J2d 
1 - r r e 

1 2 

The j X j f a c t o r forms a - 1 , and, e x t r a c t i n g the a2 term as was 

done above, reduces equation (37) t o : 

t l t2 e-Jd 

-j2d 
1 - r r e 

1 2 

a2 (2.28) 
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This equation forms element S12 of the s c a t t e r i n g m a t r i x , the p o r t i o n 

of hi dependent upon a2. The f u l l scattering matrix for the Fabry-

Perot, c o l l e c t i n g equations (2.17), (2.19), (2.26), and (2.28), i s : 

b l 

b2 

-j2d 
- r + r e ^ 

1 2 
1 _ r r e-J2d 

1 2 

t l t2 e-Jd 

1 - r ^ e-J2d 

t l t2 e-Jd 
1 - r r e-J2d 

1 2 

-j2d 
- r + r e ^ 

2 1 
1 - r ^ r2 e-J2d 

ai 

^2 

(2.29) 

At f i r s t b l u s h , a s i g n d i f f e r e n c e between Sn and S22 i n d i c a t e d , 

but the ri and r2 p o s i t i o n s are p h y s i c a l l y simply reversed. Since 

l i g h t approaching m i r r o r 2 i s r e f l e c t e d and c o n t r i b u t e s -r2a2 to the 

b2 q u a n t i t y , the equivalency of the above equation i s seen. 

Although each m i r r o r i s considered to be i n f i n i t e l y t h i n , and 

that i n a p h y s i c a l r e a l i z a t i o n of a Fabry-Perot system w i t h t h i c k e r 

m i r r o r s , the m i r r o r s themselves form resonant c a v i t i e s . However, the 

resonant system w i l l be dominated by the i n t e r p l a y between the a c t u a l 

m i r r o r s u r f a c e s . Since the m i r r o r s are considered to be i n f i n i t e l y 

t h i n , the values of t , the t r a n s m i s s i o n c o e f f i c i e n t w i l l always be 

l e s s than u n i t y s i n ce the l i g h t wave i s never considered to be 

propagating through a volume of l e s s e r impedance/greater o p t i c a l 

d e n s i t y such as g l a s s , i n t o a volume of greater impedance/lesser 

o p t i c a l density such as a i r . Therefore, each a d d i t i o n a l 

m u l t i p l i c a t i v e term diminishes the r e s u l t . 



CHAPTER 3 

THE TRANSMISSION MATRIX GENERALLY 

The order of the elements w i t h i n a transmission matrix d i f f e r s 

from that of a s c a t t e r i n g m a t r i x . This i s to enable the transmission 

matrices to be m u l t i p l i c a t i v e l y j o i n e d to describe a system. 

"bl' T i l T l 2 b2 

_ai_ J21 T22_ a2_ 

Compare t h i s matrix system wi t h the matrix of equation 2.1: 

"bl' 'sii S12" ai (2.1) 

b2 S2I S22 82 

In equation ( 3 . 1 ) , the input/output i n t e r f a c e , say i n t e r f a c e 2, 

of a two port system i n terms of i t s input a2 and i t s output b2 can 

be operated upon by the transmission matrix of equation (3.1) to 

y i e l d a "new" or updated input/output i n t e r f a c e 1 w i t h a next 

adjacent input/output p a i r , namely b2 and a2. Many transmission 

matrices may be s e q u e n t i a l l y m u l t i p l i e d against an i n i t i a l 

output/input p a i r b2/a2 to y i e l d a s e q u e n t i a l s e r i e s of intermediate 

output p a i r s . In t h i s way the system s t a t e s are known at each p o i n t . 
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A l t e r n a t i v e l y , the matrices may be m u l t i p l i e d together to form a 

l a r g e matrix which may then be m u l t i p l i e d against an i n i t i a l 

output/input p a i r ^^1^2 y i e l d the f i n a l output b^/ai p a i r . This 

i s e s p e c i a l l y u s e f u l where the intermediate s t a t e s are not required 

to be known. A l a r g e r matrix u t i l i z e d i n a s i n g l e matrix 

m u l t i p l i c a t i o n can be performed more r a p i d l y , conserving computer 

time. 

The order of m u l t i p l i c a t i o n of the matrix i s important. 

Reversing the order of the matrices w i l l cause a non-sense 

m u l t i p l i c a t i o n of the elements. Even though s e v e r a l matrices may be 

m u l t i p l i e d to make a s i n g l e l a r g e r m a t r i x , each m u l t i p l i c a t i o n step 

s t i l l "processes" the input to the system to s e v e r a l intermediate 

stages, the l a r g e r matrix u t i l i z a b l e to perform the whole "process" 

at one time. 

Although the transmission matrix a l s o has a "sense" o r i e n t a t i o n 

i n that each component represents a c o n t r i b u t i o n from i d e n t i f i a b l e 

sources, and as mentioned above, the transmission matrix does not 

lend i t s e l f r e a d i l y to an experimental or l o g i c a l manipulation i n 

i s o l a t i n g the sources of the outputs. T j ^ , f o r example represents 

the p o r t i o n of energy i n b^ due to a2. Ti2> s i m i l a r l y represents the 

p o r t i o n of energy b^ due to b2> a r e l a t i o n s h i p which i s not d i r e c t l y 

l o g i c a l l y apparent. However, note that the simple i d e n t i t y 

r e l a t i o n s h i p s cannot be i n a r e a l sense stated f o r each transmission 

c o e f f i c i e n t as was the case f o r the s c a t t e r i n g m a t r i x . This i s 

because the dependencies are n e i t h e r l o g i c a l , nor p h y s i c a l l y 

i s o l a t a b l e . 
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In the s c a t t e r i n g matrix equations, the input to a two port 

system could be blocked o f f to a l l o w the t e s t i n g of one of the 

outputs i n terms of one of the i n p u t s . The bl o c k i n g o f f of an input 

i s a p h y s i c a l l y r e a l i z a b l e phenomenon. For the transmission m a t r i x , 

the d e f i n i t i o n of T^j would i n v o l v e the " s h u t t i n g o f f " of a two port 

output. 

The s h u t t i n g o f f of an output i n a p h y s i c a l l y r e a l i z a b l e sense 

cannot be accomplished e a s i l y , or without i n t e r f e r i n g w i t h the system 

i n some other way, or without i n t r o d u c i n g a "new" system p o r t i o n to 

complicate the process. The same holds true f o r the other 

transmission matrix members. This i s why the transformation from 

s c a t t e r i n g m a t r i c e s , w i t h t h e i r "make sense" and p h y s i c a l l y 

r e a l i z a b l e elements, to transmission matrices i s so important and 

v a l u a b l e . 

Most o b v i o u s l y , note that s c a t t e r i n g matrices give the outputs 

i n terms of the i n p u t s . The transmission matrices give the 

input/output p a i r f o r a s i n g l e port by operating on the input/output 

p a i r of the next adjacent p o r t . The a b i l i t y to compute a 

transmission matrix from a s c a t t e r i n g m a t r i x , e s p e c i a l l y f o r matrices 

as l a r g e as equation (39) and l a r g e r can f a c i l i t a t e the a n a l y s i s of a 

system, p a r t i c u l a r l y the Fabry-Perot. 

To d e r i v e the transmission matrix from the s c a t t e r i n g m a t r i x , 

the equation formed from row one of s c a t t e r i n g matrix 12 i s f i r s t 

u t i l i z e d . 

b l = S i i a i + Si2 a2 (3.2) 



Solving for 32 yields 
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32 = bl _ Sii 31 (3.3) 

Sl2 Si2 

Utilizing the equstion formed from row two of scsttering matrix 

equ3tion 2.1, namely 

b2 = S21 31 + S22 32 (3.4) 

yields the following expression: 

b2 = S21 31 + S22 bl - S22 Sii ai (3.5) 

S12 S12 

Next, multiply the first term of equation 3.5 by S12/S12: 

b2 = S12 S21 31 + S22 bl _ S22 Sii ai (3.6) 

S12 S12 S12 

Next, collect the terms having 3 common ai factor. 

b2 = (S12 S21 - S22 Sii) ai + S22 bl (3.7) 

S12 S12 
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The two r i g h t hand terms of equation (3.7) form the T^j and 

elements of the transmiss i o n m a t r i x . To f i n d the T21 and T22 

elements of the transmiss i o n m a t r i x , next a2 i s computed i n terms of 

ai and u t i l i z i n g the r e l a t i o n s h i p of equation 3.2. 

b l = S i i a i + S12 a2 (3.2) 

Equation 31 can be d i r e c t l y manipulated to y i e l d 

a2 = - S l l a i + b l (3.8) 

S12 S12 

By c o l l e c t i n g the s o l u t i o n s f o r b2 and a2 i n equations (3.7) and 

( 3 . 8 ) , the s o l u t i o n s as ordered above e x a c t l y f i t the transmission 

matrix format i n terms of both the matrix operated upon and i n terms 

of the generated m a t r i x . 

(S12 S2I - S22 Sii) S22 

S12 S12 

- s i i 1 31 
S12 S12 

-

(3.9) 

The S e r i a l J o i n i n g of Transmission Matrices 

As p r e v i o u s l y s t a t e d , transmission matrices f o r a system may be 

s e r i a l l y j o i n e d to y i e l d the t o t a l system output. The l a r g e 

composite matrix gives the output f o r a given i n p u t , but a s e r i a l 
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treatment of the smallest matrix u n i t on a given output s e q u e n t i a l l y 

y i e l d s the intermediate s t a t e s of the energy i n process. The next 

equation i l l u s t r a t e s a "chain" of smaller transmission m a t r i c e s . 

T i l T12 T i l T12 T i l T12 T i l T12 b2 

a i T2I T22 
z 

T2I T22 
y 

T2I T22 
X 

T2I T22 
w 

32 

(3.10) 

Each matrix w, x, y, and z , i n sequence, t r e a t s an i n i t i a l input 

from port 1. Note that the flow of the s i g n a l or energy w i l l be from 

port 2, through device w, x, y, and f i n a l l y z . I t may appear that 

the matrix of equation (3.10) was w r i t t e n backwards, but i t i s 

w r i t t e n i n the order of m u l t i p l i c a t i o n . M a t r i x w i s m u l t i p l i e d 

against the b2 a2 output/input m a t r i x , then matrix x i s m u l t i p l i e d 

against the r e s u l t , then matrix y, and f i n a l l y matrix z i s m u l t i p l i e d 

against that r e s u l t to form the f i n a l r e s u l t . As a check, smaller 

transmission matrices formed by manipulation of the small s c a t t e r i n g 

matrices should form the same l a r g e r t ransmission matrix formed by 

manipulation of the l a r g e s c a t t e r i n g m a t r i x . 

Small Element M a t r i x Transformation 

In equation (2.7) the s c a t t e r i n g matrix f o r a t h i n d i e l e c t r i c was 

set f o r t h . Equation (3.9) puts forward the transformation equation 

f o r transforming a s c a t t e r i n g matrix to a transmission m a t r i x . 

. " 2 . 

- r 

j t - r 

a i 

a2 

(2.7) 
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b2 

32 

(S i 2 S21 - S22 Sii) 

S12 

- S l l 

S12 

S22 

S12 

S12 

b l 

a i 

(3.9) 

I n s e r t i n g the elements of (2.7) i n t o ( 3 . 9 ) , f o r a s i n g l e m i r r o r , say 

m i r r o r 1, y i e l d s the tr a n s m i s s i o n matrix f o r a t h i n d i e l e c t r i c : 

— — 

b2 
( j t l j t l _ ( ( - r l ) ( - r i ) ) ) -n b l b2 

j t l j t l 

b l 

32 1 a i 

j t l j t l 

_ _ 

(3.11) 



AO 

Reducing further yields: 

— 
2 2 

C - t l - r l ) -n bl bl 

a2 r i 1 ai 

j t l 

_ 

Since = 1 - r ^ , T j i , the upper l e f t term becomes unity, which then 

yields: 

b2 

a2 

-1 

j t l 

- r l 

j t l 

r i 

j t l j t l 

bl 

(3.13) 

ai 

Similarly for mirror 2, equation (3.13) becomes: 
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b2 

32 

-1 

Jt2 

-^2 

Jt2 

r2 

Jt2 Jt2 

bl 

ai 

(3.14) 

The relationship between phase and space described in equation 

(2.9) can be stated in terms of a scattering matrix should be 

transformable to a scattering matrix by the application of simple 

logic. As recited above in equation (2.1), the matrix i s usually 

written in the following form: 

"bl" " s i i S12' ai 

b2 S21 S22 a2 

Consider the generalized scattering matrix at Figure 3 to be a 

section of free space having a l e f t boundary at port 1 and a right 

boundary at port 2. For this section of free space, there is no 

reflection at the space boundary. Light entering from the l e f t , a^, 

continues through the volume within the boundaries of the free space 

section boundary, emerging as b2. Likewise, light entering from the 

right, a2, continues through the volume of space within the 

boundaries of the free space section boundary and emerges as b^. 
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Since 100% of the amplitude i s transmitted straight through, 

this sets the relationship between ai and b2f and between a2 and b]_ 

as unity. This corresponds to the S21 and the S12 entries, 

respectively, of the scattering matrix shown in equation (2.1). 

However, during the propagation through the space between the two 

ports, a phase change occurs. As stated in equation (2.9), this 

phase change i s equivalent to e"~J^, which has an absolute value of 

unity. 

Similarly, there i s no reflection at the boundaries meaning that 

no beam aj ever becomes or contributes to b^. No beam a2 ever 

becomes or contributes to b2. This means that the absolute value of 

the relationships between a^ and b j , and between a2 and b2 i s zero. 

This corresponds to the Sn and the S22 entries, respectively, of the 

scattering matrix shown in equation (2.1). 

The following matrix results: 

bl 

b2 
L J 

0 e-Jd 

e-Jd 0 

ai 

32 

(3.15) 

Next, u t i l i z i n g equation (3.9) for transformation from a 

scattering to transmission matrix, the following matrix results: 

b2 

32 

(e-Jd e-Jd - (0) (0)) 

e-Jd 

0 

5-Jd 

bl 

31 

(3.16) 
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Reducing further yields: 

bl 

b2 

e-Jd 0 

0 e+: 

ai 

I 32 

(3.17) 

which i s the expression for a transmission matrix for a section of 

free space. 

The Fabry-Perot Transmission Matrix 

Again taking equation (3.9), equation (2.29) i s inserted 

therein. F i r s t , for ease of explanation, the factor l/(l-rir2e"j2d) 

i s factored out of equation (2.29). 

1 - r r e-J2d 
1 2 

r^+ e 

-tl t2 e-Jd _^ + J. e-j2d 

V '^l ^ 

(3.18) 

Plugging the ra3trix portion of equ3tion (3.18) into equstion (3.9) 

will require that the left side factor of equation (3.18) be 

included. To f3cilit3te this, equation (3.9) is again illustrated, 

3nd the computations will be performed one element at a time. 
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32 

(Sl2 S21 - S22 S i i ) 

S12 

- S l l 

S22 

S12 

S12 S12 

31 

(3.9) 

The whole of equation (3.18) into equation (3.9) is the following matrix: 

(t2)2(ti)2e-J2d - ((rir2)-((ri)2e-J2d)_((r2)2e-j2d)+(rir2e-J^d) r2-rie-J2d 

(1 - rir2 e-J2d)2 (1 - rir2 e-J2d)2 (l-rir2e-J2d) 

L 

- t l t2 e-Jd 

(1 - rir2 e-J2d) 

- r l + r2 e-J^^ 

(1 - rir2 e-J2d) 

t l t2 e-Jd 

(1 - rir2 e-J2d) 

t l t2 e-Jd 

(l-rir2 e-j2d) 

- 1 

t l t2 e-Jd 

(l-rir2 e-J2d) 

J 
(3.18A) 

The upper le f t , or Tn element of the transformation gives: 
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(t2)2(ti)2e-j2d - ((rir2)-((ri)2e-j2d)_((r2)2e-j2d)+(rir2e-J^d) 

(3.19) 
(1 - rir2 e-J2d)2 (i _ rir2 e-J2d)2 

- t l t2 e-Jd 

(1 - rir2 e-J2d) 

Dividing the large common factors yields: 

(t2)2(ti)2e-J2d - ((rir2)-((ri)2e-J2d)-((r2)2e-J2d)+(rir2e-J^d) 

(l-rir2e-J2d)(_tit2 e-Jd) (1 - rir2 e-J2d)(-tit2e"jd) (3.20) 

Both terms have the same common denominator. In addition, to enable 

cancellation, the t terms in the numerator will be substituted for by using 

the relationship t2 = 1 - r2. This will put the final result in terms of the 

reflection coefficients. 

(l-r2)(l-ri)e-J2d - ((rir2)-((ri)2e-J2dH(r2)2e-J2d)+(rir2e-J^d) 

(3.21) 

(1 - rir2 e-"j2d)(^tit2e-jd) 

Next, the term in the left half of the numerator is expanded, and the 

parenthetical expressions in the upper right half of the numerator are 

eliminated with the appropriate sign assignments. 
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1 I 
2 2 2 2 

(1 - r2 - r i + r2ri )e "J^d 
2 2 

rir2 + rie-J2d + r2e-J2d _ rir2e~J^'^ 

(3.22) 

(1 - rir2 e-J2d)(-tit2e-jd) 

Noting the two sets of like terms, and performing the cancellation 
gives: 

|-J2d + r2ri e -j2d _nr9 -r^r'?^-3^^ 1̂ 2 -rir2e 

(1 - rir2 e-J2d)(-tit2e-Jd) 

(3.23) 

Noting that the numerator can be factored into two multiplicative 

factors, one of which matches the denominator yields: 

(e-J2d _ rir2) (1 - rir2 e-J2d) 

(1 - rir2 e-J2d)(_tit2e-Jd) 

(3.24) 

Cancelling: 

(e-j2d _ rir2) 

(-tlt2e-Jd) 

(3.25) 
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Dividing by e-Jd yields and moving the bottom negative sign: 

(3.26) 

(3.27) 

(_e-jd + rir2e+Jd) 

(tlt2) 

Next the upper right, or T12 element i s computed 

r2-rie-J2d 

(l-rir2e-J2d) 

t l t2 e-Jd 

( l - r i r 2 e-J2d) 

Cancelling like denominators, and dividing by e-Jd gives: 

r2e+Jd-rie-Jd 

(3.28) 

t l t2 

Next, the lower l e f t , or T21 element of the transmission matrix i s 
treated: 

- r l + r2 e-J2d 

(1 - rir2 e-^i2d) 

(3.29) 

t l t2 e-Jd 

(1 - rir2 e-32d) 
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Cancelling like denominators, and dividing by e-Jd gives: 

- r l e+Jd ^ ^2 e'^^ 
(3.30) 

t l t2 

Finally, the lower right transmission element, T22 i s : 

- 1 

(3.31) 

t l t2 e-Jd 

(1 - rir2 e-J2d) 

Inverting and negativing the denominator into the numerator gives: 

(rir2 e-j2d _ l ) 

(3.32) 
t l t2 e-Jd 

Dividing by e-Jd gives: 

(rir2 e-Jd - e+Jd) 
(3.33) 

t l t2 

Combining a l l of the elements of equations (3.26), (3.28), (3.30), 

and (3.33) of the transmission matrix for the Fabry-Perot yields: 
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(_e-jd + rir2e+Jd) 

t l t2 

- r l e+Jd ^ 2̂ 6"̂ ^ 

t l t2 

(r2e+Jd-rie-Jd) 

t l t2 

(rir2 e-Jd - e+Jd) 

t l t2 

(3.34) 

In order to visualize how the r e f l e c t i v i t y , which of course 

determines the transmissivity, affects the transmission matrix, the 

fi n a l set of t's may be stated in terms of their respective r's. 

(-e-Jd + rir2e +Jd) 

( ( l - r i ) ( l - r 2 ) ) - 5 

- r l e+Jd + r2 e -Jd 

((l-r?)(l-r2))-5 

(r2e+Jd-rie-Jd) 

( ( l - r i ) ( l - r 2 ) ) - 5 

(rir2 e-Jd - e+Jd) 

(( l - r i ) ( l - r 2 ) ) - 5 

(3.35) 

As a check, the individual transmission matrices (3.13), (3.14), 

and (3.17) can be multiplied together to yield equation (3.35). 

Although the Fabry-Perot can accept light into either port, the 

matrices w i l l be arranged to treat port 1 as an input since i t w i l l 

be less confusing when the single fiber Fabry-Perot i s considered. 
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b2 

32 

-1 -^2 
jt 2 Jt2 
^2 1 

j t 2 Jt2 
(3.13) 

0 

0 e+Jd 

(3.14) " 

-1 - r i 
j t l j t i 
r i 1 

j t l j t l 

(3.17) 

bl 

a i 

(3.36) 

b2 -1 -^2 -e-Jd - r i e - j d bl b2 

= 
j t 2 Jt2 
n 1 

j t l j t l 
rie+Jd e+Jd 

bl 

32 j t 2 Jt2 j t l j t l a i 
(3.13) (intermedi3te) 

b2 e-jd -rir2e+jd +rie-jd _r2e+jd b2 
- t i t2 - t l t2 

32 -^2 e-Jd + rie+jd -rir2e-Jd + e+Jd 
- t l t2 - t l t2 

(3,37) 

bl 

(3.37) 

The negative signs are due to the j2 factor. Consolidating signs: 

b2 

32 

-e-Jd +rir2e+jd 
t l t2 

T2 e-Jd - rie+Jd 
t l t2 

-rie- J d +r2e+Jd 
t l t2 

^^ir2e-Jd - e+Jd 
t l t2 

bl 

a i 

(3.38) 

Note thst equ3tion (76) 3grees with equ3tion (71), and th3t the 

scsttering mstrix for the F3bry-Perot i s derivsble d i r e c t l y , or from 

the individu3l tr3nsmission mstrices. 



CHAPTER 4 

SINGLE OPTICAL FIBER OPERATION 

After considering the parameters outlined above, and considering 

a two mirror interferometer with a single f i b e r approach, a condition 

i s necessary i n order for the system to work. 

To i l l u s t r a t e how a single f i b e r interferometer might be set up, 

f i r s t , consider a system i n which the f i r s t mirror, mirror 1, has a 

re f l e c t i o n c o e f f i c i e n t greater than zero and less than unity, and 

where mirror 2 has a r e f l e c t i o n coefficient of unity. In terms of 

the t o t a l energy, i t i s clear that such a sensor returns 100% of the 

energy a l l the time. This i s , of course, excluding losses. I f 100% 

of the energy returns, the interferometer cannot operate i n the 

standard Fabry-Perot mode. There would be no discernment between 

d i f f e r i n g spacing of the mirrors. 

Referring to equation (2.29), and considering a2 to be zero 

since mirror r2 i s t o t a l l y r e f l e c t i n g and no l i g h t energy may enter, 

and ignoring b2, only the upper l e f t term of the matrix i s relevant: 

- r + r e 1 2 
-j2d 

a i (4.1) 

1 - r r e-J2d 
1 2 
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The r2 term i s unity. Dividing by to get a r a t i o y i e l d s : 

_ = _ i (4.2) 

a i 1 _ r e-J2d 
1 

A cursory analysis of equation (4.2) indicates that where 2d i s 

equal to 2 , the r a t i o i s one exactly. For half that value, the 

r a t i o i s equal to negative one. For /4, the r a t i o varies from 

1 / 0 degrees for r^ equal to zero to 1 /ISO degrees for r^ equal 

to unity. Thus a l l of the energy i s returned, and the only 

difference i s i n the phase of the l i g h t returning. Due to the 

coherence length of l i g h t used, the average "length" or time duration 

of a single photon would make measuring the phase difference 

v i r t u a l l y impossible. Each photon, or a composite of a l l photons 

would have to be phase measured upon transmission and return. Such a 

system i s not conducive to simple, steady-state operation. 

One way to preserve the Fabry-Perot mechanism i s to allow mirror 

2 to be p a r t i a l l y r e f l e c t i v e , to allow energy to escape the 

interferometer beyond mirror 2. Such an escape would need to be 

guarded, such that no random l i g h t energy entered mirror 2. This 

would e n t a i l covering the surface of mirror 2 with a l i g h t absorbing 

material, or surrounding mirror 2 with a non-reflective surface. The 

surface would additionally need to be i n a position to dissipate 

heat. Instead of using the l i g h t transmitted through and beyond 

mirror 2 as a measure of mirror separation, the l i g h t reflected back 

to the source would be u t i l i z e d . 
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Figure 4.1. Single Fiber Interferometer Schematic 
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A d i r e c t i o n a l coupler capable of coupling l i g h t propagating away 

from the interferometer could be used as an indicator of r e l a t i v e 

mirror position. Such a device i s shown i n schematic form i n Figure 

4.1 on the previous page. An alternate embodiment could include a 

colored mirror 2 along with a mirror 1 colored on the inside, both 

also p a r t i a l l y r e f l e c t i v e . Mirror 1 would be a color neutral mirror. 

The internal "a" f i e l d due to multiple reflections against mirrors 1 

and 2 would then be of one color. 

Instead of a simple f i b e r optic d i r e c t i o n a l coupler, a 

wavelength d i v i s i o n multiplexer could be used. For the standard 

Fabry-Perot, the energy return consists of both the r e f l e c t i o n from 

the outside mirror 1, which i s a constant, and would be color neutral 

and the ref l e c t i o n s due to the internal f i e l d . The constant energy 

reflected due to mirror 1 retains a constant minimum energy 

difference regardless of the mirror spacing. This w i l l increase the 

required s e n s i t i v i t y for the electronic detector u t i l i z e d to detect 

changes i n mirror spacing. The increased s e n s i t i v i t y w i l l be 

necessary to detect the difference between the energy peaks and 

valleys. Light of a given color reflected by mirror 2 would build 

into an internal "b" f i e l d of a constant color. This constant color 

l i g h t , even though propagating back to the detector along with l i g h t 

of the o r i g i n a l transmitted color, w i l l be selectively s p l i t off by 

the wavelength d i v i s i o n multiplexer, and thus be measured d i r e c t l y . 

In t h i s manner, the color modified l i g h t can be measured i n the 

absence of l i g h t r e f l e c t i n g from mirror 1, and the resolution of a 

given detector can be s i m i l a r l y increased. 
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P r a c t i c a l Considerations 

In the o p t i c a l f i b e r , a l l of the l i g h t does not propagate along 

i t s a x i a l center i n a straight l i n e . Neither does a l l of the l i g h t 

t r a v e l i n a straight l i n e as i t propagates along the f i b e r . Light 

"bounces" or r e f l e c t s from side to side as i t propagates through the 

f i b e r . As a r e s u l t , at the "gap" between mirror 1 formed by the 

polished end of the f i b e r and mirror 2 formed by a planar r e f l e c t i v e 

surface displaced by the f i b e r , not a l l of the l i g h t w i l l propagate 

normal to mirrors' planar surfaces. 

The portions of l i g h t which manage to leave mirror 1, travel to 

mirror 2 at an angle, r e f l e c t and re-enter mirror 1 w i l l have 

traveled a longer path than the portion of the l i g h t which propagated 

between the mirrors at a normal angle. A greater path length favors 

a s l i g h t l y lower frequency component. This deviation w i l l tend to 

blur or make less sharp the boundary between the wavelengths of l i g h t 

whose propagation through the Fabry-Perot are favored versus those 

wavelengths of l i g h t whose propagation i s suppressed. 

The degree to which a non-normal portion of l i g h t affects the 

t o t a l result i s , however, inversely proportional to the anglular 

deviation from normal incidence of the l i g h t leaving mirror 1. This 

i s because a higher angle w i l l cause a lesser number of multiple 

reflections between the mirrors 1 and 2 before the l i g h t wave veers 

to a point where i t cannot be recaptured by the mirrors. For 

example, a small angle deviation might support several hundred 

internal reflections before veering off as a loss. A larger angle 

deviation might only allow 2 or 3 internal reflections before veering 
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off as a loss. Therefore, for larger angles, the path length 

difference with respect to normal incidence w i l l be much greater, but 

the effect of smaller numbers of internal multiple reflections w i l l 

mitigate the effect. For smaller angles, the path length difference 

with respect to normal incidence w i l l be much les s , but the effect of 

larger numbers of internal multiple reflections w i l l enhance the 

effect. 

Truncating these two off s e t t i n g effects i s a l i m i t a t i o n known as 

the cone of acceptance. In order for l i g h t to propagate along a 

fibe r optic l i n e , the angle of propagation with respect to the 

internal wall of the fi b e r must be s u f f i c i e n t l y small for t o t a l 

i nternal r e f l e c t i o n to occur. Larger angles with respect to a l i n e 

p a r a l l e l to the walls cause losses. Due to Snell's law, the angle of 

incidence on the end of a fi b e r optic l i n e determines the propagation 

angle within the f i b e r . An angle greater than t h i s minimum angle 

represents a loss, and therefore a cutoff. 

An estimate of the maximum percent deviation due to th i s non-

i d e a l i t y may be made once the maximum angle of acceptance and Fabry-

Perot separation i s known. In Figure 4.2, a section of fi b e r i s 

shown. The fiber i s made of a material having index of refraction ni 

and surrounded by a material (or no material) having an index of 

refraction n2. The end of the fi b e r forms mirror 1, while mirror 2 

i s shown to the l e f t . Angle a^ i s made with a l i n e a x i a l l y p a r a l l e l 

to and outside the f i b e r . Angle a2 i s made with a l i n e a x i a l l y 

p a r a l l e l to and within the f i b e r . Angle a2 d i f f e r s from angle a^ due 

to Snell's law and the difference i n refractive index between the 



Figure 4.2. Cone of Acceptance Schematic 
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space between the mirrors and the inside of the f i b e r . An angle a3 

with respect to the inner wall of the f i b e r i s 90 degrees different 

from the angle a2. 

The angle i s the t o t a l internal reflectance angle, or the 

c r i t i c a l angle given by: 

Sin a3 = ^2/^1 (4.3) 

The angle a i i s related to angle a2 by Snell's law, where the index 

of refraction for a i r i s 1.0 and i s : 

1.0 s i n ai = n^ s i n a2 (4.4) 

As previously stated, the 90 degree difference between a2 and a3, i n 

equation form i s : 

a2 = 90 degrees - a3 (4.5) 

Using the relationship that cos^ + sin2 = 1, cos a2 = sin a3 = 

^2/^1' yi e l d s : 

s i n ai = n^^^ ^12^ (4.6) 

So, the index of refraction of the fiber and the material or 

lack thereof surrounding i t determines the angle of acceptance a^. 

As an example for i l l u s t r a t i v e purposes, consider a 100 micron 
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diameter f i b e r has a polished end forming mirror 1 separated from a 

mirror 2 having an excessive diameter, by 500 nanometers. Consider 

the o p t i c a l f i b e r to have a refractive index of n^ =1.6 and the 

outer cladding to have a refractive index n2 = 1.5. According to the 

equation above, aj becomes 33.8 degrees. A 33.8 degree angle, over a 

base length of 500 nanometers forms a hypotenuse of 601 nanometers. 

This means that l i g h t may enter the f i b e r at angles of deviation 

from normal of from 0 degrees experiencing a mirror spacing of 500 

nanometers to 33.8 degrees experiencing a mirror spacing of 601 

nanometers. This path difference i s a 16.8% maximum r e l a t i v e 

pathlength difference. I t i s not plus or minus since the path length 

can increase, not decrease. Given that l i g h t should be uniform 

across an array of angles whose average i s equal to 33.8 degrees, the 

average pathlength difference should see a 16.9 degree angle 

corresponding to a 522 nanometer hypotenuse for a right angle between 

the mirrors. This r e l a t i v e pathlength difference i s 4.45%, about one 

fourth of the maximum calculated above. 

The attenuation occurs both with respect to l i g h t leaving the 

fi b e r at an angle greater than 33.8 degrees and l i g h t attempting to 

enter which i s greater than 33.8 degrees. The cone of acceptance 

would at f i r s t appear to dictate the size of mirror 2, but i t must be 

noted that the worst case for r e f l e c t i o n back into the fiber would be 

a photon leaving one edge of the f i b e r , or the polished edge of 

mirror 1, r e f l e c t i n g across the center. Obviously, any l i g h t from 

one edge propagating concentrically away from the center axis of the 

fib e r w i l l be l o s t i n any event. However, l i g h t from one edge which 
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propagates normally with respect to the mirrors should have the size 

of the mirror opposite of equal diameter to permit the return t r i p . 

Therefore, the size of mirror 1 and mirror 2 w i l l be approximately 

equal with no s i g n i f i c a n t increase i n loss. 

Given that the diameter of the fi b e r i s r e l a t i v e l y larger than 

the gap, an expansive area i s available to accept l i g h t , and the 

angle of acceptance governs l i g h t entering at any point, not just 

near the center or edges. Moreover, remembering that l i g h t 

propagating down the fi b e r toward mirror 1 i s subject to the same 

internal r e f l e c t i o n angle l i m i t a t i o n , i t i s clear that a l l of the 

l i g h t available for propagation between the mirrors should originate 

at an angle no greater than the 33.8 degree "cone of l i g h t " . I f t h i s 

i s the case, the loss can be computed by considering the 33.8 degree 

frusto-conical volume of l i g h t between the mirrors, and finding the 

ra t i o of mirror 1 to the area illuminated at the 500 nanometer 

separation, given the 33.8 degree "spread" which w i l l be l o s t . 

The sine of the 33.8 degree angle multiplied times the 601 

nanometer hypotenuse of the right angle formed by the spread w i l l 

give the additional radius of l o s t l i g h t via missed illumination of 

mirror 2. This represents an additional radius of 334.3 nanometers. 

For a fib e r diameter of 100 microns, and assuming even illumination, 

the illuminated diameter at 500 nanometers becomes 100.668 microns. 

The percentage recaptured l i g h t i s the square of the radius of the 

fib e r divided by the square of the radius of the illuminated area. 

Here t h i s quantity i s (50 microns)2/(50.334 microns)2, or .9867. So, 

the efficiency i s about 98.67%. Again, t h i s assumes that the only 
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l i g h t available for multiple r e f l e c t i o n i s within a 33.8 degree cone 

of l i g h t . Also, since the average angle should be less than 33.8 

degrees, t h i s efficiency i s conservative. 

The assumption that a l l l i g h t leaving the fi b e r i s within t h i s 

cone of l i g h t aids i n introducing the l a s t source of error, that of 

truncation of the i n f i n i t e multiple reflections due to l i g h t waves 

angling off of the mirrors. For normal propagation, an i n f i n i t e 

number of reflections i s possible to a point where the quantum of 

energy necessary to support a photon's existence f a l l s below i t s 

minimum threshold. Light, even i f i t enters from the edge of the 

fib e r and propagates toward the center w i l l r e - r e f l e c t a f i n i t e , even 

i f large, number of times. 

In the above example, given an average angle of 16.9 degrees and 

a cross diameter tra v e l of 44 nanometers per round t r i p r e f l e c t i o n 

over the diameter of the 100 micron diameter f i b e r , the number of 

refle c t i o n s would be the former length divided into the l a t t e r 

diameter. This equates to 2272 t r i p s . Similarly the maximum angle 

of 33.8 degrees and a diameter tra v e l of 668.6 nanometers per round 

t r i p equates to 149 round t r i p s . An average 2272 re f l e c t i o n s , and 

using a .5 r e f l e c t i v i t y for the interferometer creates an error 

smaller than 10"99^ The 149 round t r i p case creates an error smaller 

than 10"^9. This error i s negligible compared with illumination loss 

due to the cone of acceptance/ cone of illumination loss. 

Conclusion 

As the above computations indicate, the Fabry-Perot 

interferometer i s readily characterizable i n terms of i t s energy and 
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phase. As i s implied, the maximum use of t h i s device may be had 

where devices and techniques capable of the resolution of small 

energy differences i s available. 

In addition, the above derivations, scattering matrices and 

transmission matrices are universal i n that they do not relate to one 

particular material. Any material need only have i t s r e f l e c t i v i t y 

and transmissivity characterized to be u t i l i z a b l e to form a Fabry-

Perot interferometer. An understanding of such energy matrices aids 

i n the physical understanding and predications of the performance of 

the device, i n v i t i n g further experimentation and configuration 

building. 
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