ABSTRACT

SCATTERING AND TRANSMISSION MATRICES FOR THE
FABRY-PEROT INTERFEROMETER
by

Curtis L. Harrington

Fabry-Perot interferometry concerns light passage through two
parallel semi-mirrored surfaces, and the attenuation and transmission
of the light based upon its wavelength in relationship to the
separation of the semi-mirrored surfaces. Environmental effects
which change the separation between the two parallel semi-mirrored
surfaces can be measured indirectly by 6bserving the characteristic
frequencies of light passing through the interferometer.

For a constant frequency of light energy introduced into the
Fabry—Perot interferometer, the mirror separation is measured by
detecfing the amount of light energy transmitted through or returned
back in the direction of the source. Energy differences of a small
magnitude require more sophisticated detectors‘to measure accurately,
therefore a sensing interferometer should be able to exhibit
éignificant energy changes as the quantities it is to measure change.
For ease of routing an interferometer system, the case where a single
. optic fiber is used to transmit light into, and receive light from
the Fabry-Perot interferometer along the same path, is of interest.
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The transmission matrix, derivable from the scattering matrix,
is most useful in the characterization of the interferometric sensor,
and 'has physical meaning with respect to the processes occurring in
the sensor. In addition, the transmission and scattering matrix
characterizations illustrate the energy and phase relationships of
the interferometer without regard to the types of materials employed

in its construction.
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CHAPTER 1

INTRODUCTION TO THE FABRY-PEROT

A plane mirror is defined as a material having an extremely
smooth surface which can both transmit and reflect optical energy.

In its simplest form, it can be considered much like a glass window
which reflects a portion of the light incident upon it, and transmits
the remainder. Typically the mirror used will have a coating to
increase its reflectivity.

Of particular interest is a system whereby two partially
transmitting mirrors are placed a finite distance apart. Light
introduced through these mirrors is attenuated based upon the
frequency components within the light beam. The operation of the
Fabry-Perot interferometer is the most exemplary example of such a
system.

The Fabry-Perot interferometer generally allows light waves
having a wavelength characteristic which is some multiple of the
distance between the plane mirrors to propagate completely through
the two-mirror system. Light waves having a wavelength
characteristic not a multiple of the mirror spacing are significantly
attenuated. The space of separation between the two plane mirrors,

often referred to as a resonant cavity, acts as a filter.
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Figure 1.1. Perspective View of the Fabry-Perot Interferometer



Like all realizable filters, the passband-stopband boundary is
not abrupt, but forms a smooth transition. In addition, the light
energy introduced into the interferometer is attenuated based upon
its wavelength/frequency composition characteristics, as well as the
degree of reflectivity of the plane mirrors employed.

Referring to Figure 1, a Fabry-Perot interferometer consists of
a mirror 1 and a mirror 2 oriented in a mutually parallel fashion,
separated by a distance L. Light falling on mirror 1, propagating in
the direction of mirror 2, will be partially reflected back to the
left and partially transmitted into the L width cavity between
mirrors 1 and 2, The light within the cavity propagating to the
right then falls upon mirror 2, which is partially reflected back
toward mirror 1, and partially transmitted through and to the right
of mirror 2. The light propagating back toward mirror 1 is again
partially reflected back into the interstitial cavity to the right
and partially transmitted back through and away from mirror 1 to the
left. The light in the interstitial space between hirror 1 and
mirror 2 continues to partially reflect within and partially transmit
through the mirrors to the outside.

The "mirrors" of Figure 1 are idealized as very thin mirrors.
This is especially true for the treatment herein. By the use of the

term "mirror,"

a partially reflecting and partially transmitting
surface is indicated. Such a mirror may have a reflectivity, the
percentage amplitude of light reflected to total light impinging a

surface, of from O to 1, but preferably somewhere in between.
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The mirrors commonly encountered have a mirrored surface applied
to a thick dielectric. The thick dielectric, usually glass, is for
the purpose of support. It will be clear from the following
discussion that a "thick" dielectric surface mirror would form its
own smaller Fabry-Perot interferometer, thus complicating the
problem, and its ease of understanding.

However, a thin surface is achievable. In some cases a polished
mirrored surface can be applied to the end of a fiber optic cable.
The material applied to the dielectric surface can be by vapor
deposition, and would be only a few molecular layers thick. Such a
deposition technique allows quantitatively tighter control over the
reflectivity.

In the case of a reflective material applied to a clear
dielectric, the change in propagation medium from a clear dielectric
to an air cavity would cause a very small error. Propagation from a
clear dielectric to a dielectric cavity, of course, would cause, the
least error. Utilization of a dielectric or other solid material in
the interstitial cavity would probably severely limit design of the
cavity housing.

But it is the geometry of and materials of construction of the
housing around the cavity which is of great interest in utilizing the
Fabry-Perot interferometer as a sensor. The parameter sensed is
usually the dimension L, the separation between the mirrors.
Depending. upon the construction, Fabry-Perot interferometers can be
made to sense temperature and pressure. The Fabry-Perot is most

fully modeled as a two port, flow through filter where a signal is



introduced at the first port and detected as it comes out of the
second port. Given the real limitations of sensor installation, it
would be optimum to have a sensor at the end of a single fiber rather
than having a sensor located at the center a loop formed by the
transmitter fiber, the sensor, and the receiver fiber. 1In such a
single fiber system, mirror 2 would be totally reflecting with
respect to the interstitial cavity, no light would enter the cavity
from the outside through mirror 2, and the single fiber would form
the conduit for light energy both to and from the Fabry-Perot sensor.
The Fresnel Formula

The Fresnel formulae define the basic interaction between light
and a relatively transparent dielectric boundary. When an
electromagnetic wave impinges a dielectric boundary, part of wave
continues through the material, and part of the wave is reflected.
Due to the continuity of the electric, or E field at the boundary,
the reflected wave must have its magnetic, or H field reversed. This
is because Maxwell's equations dictate that for an electric field
pointing in one direction while propagating in second direction fixes
the direction of the magnetic field exactly.

Figure 2 illustrates the relative orthagonal relationship
between the electric field, E, and the magnetic field H, as it
approaches a dielectric surface. The electric, or E field is shown
to be continuous at a boundary. For a wave emanates from the
boundary in the opposite direction, given that the E field is
continuous at the boundary, the H field must be considered to change

its orientation to maintain consistency with the coordinate system.
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As a result of the above relationships, two important equations

result:

= Fte—aze-jBz 4 E-etazet]jBz (1.1)

t
]
|

H. = Hte—aze-jBz _ H-etaze+jBz (1.2)

In equations (1.1) and (1.2), Ey is the x component of the E
field, Hy is the y component of the H field associated with Ey, and
where the exponents relate to propagation in the positive z direction
for a negative exponent and propagation in the negative z direction
for a positive exponent.

These equations lead to a visually more identifiable expression:
Ei + Er = Eg (1.3)
Hi - H = H (1.4)
Here the subscripts stand for the incident, reflected and
transmitted fields. Given that the intrinsic impedance N for any
region is the ratio of the Ey field divided by the Hy field, and

using the second of the above equations, with the incident wave in

zone 1 and with the transmitted wave in zone 2, yields the following:

E
xt (1.6)

N1 = Xi (1.5) N2
yi



E E
Hyi = xi (1.7) Hyp = Xt (1.8)
N1 N2

Utilizing equations (1.7) and (1.8) into (1.4) above yields

Exi - Exr = Ext (1.9

Solving for the reflection coefficient yields:

r = Er = Np_Np (1.10)
Eq N1 + Np

Similarly, solving for the transmission coefficient, t, yields:

t = B = 2N) (1.11)
E; N1 + Np

These are the most recognizable forms of this relationship.

From equation 1.10, it is evident that the sign of the reflection
coefficient is either positive or negative depending upon whether the
electromagnetic wave propagates from a less dense (higher N) to a
more dense (lower N) region or from a more dense to a less dense
region.

Looking at it another way, for an incident wave having a phase
of +1, the reflected wave could have a phase of +1 or -1, depending
upon whether or not the propagation was from a region of given
density into a relatively more dense or a relatively less dense

region.



Remember that "t" and "r'" are not the energies of the light
transmitted and reflected, but represent the amplitudes of the
light. For example, a light wave having an amplitude of 1 travelling
in glass would have an amplitude of greater than 1 if it traversed
the glass—air boundary and continued its propagation into the air
region. This is evident from equation (1.11) when Ny has a value in
air of about 377, and when N} has a value in a particular glass of
about 251.

n_.n

However, "r" and "t" are related to energy. The square of "r"

yields the percent energy reflected. Unity, or 1, minus the value of
"t" squared yields the percent energy transmitted. Therefore, a
matrix allows handling of amplitudes, phases, and, with the above

relationships, energy.



Figure 2.1. Generalized Scattering Matrix Representation
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SCATTERING

The relationship between
itself to analysis based upon
is shown in Figure 2.1, a box
entity. Energy can flow into

hand side, port 1, and energy

CHAPTER 2

PARAMETERS GENERALLY

a plane
the use
defines

the box

mirror and optical energy lends

of scattering parameters.

a network, or some spatial

As

or exit the box from the left

can flow into the box or exit the box

from the right hand side, port 2.

A mixed designation is utilized

wherein the aj represents energy into port 1, by represents energy

out of port 1. Similarly, aj represents energy into port 2, and by

represents energy out of port

The matrix is usually written in the following form:

Where:
S11

(ap=0)

S12
(a1=0)

2.

S12 aj
S22 ap
S22
(a1=0)
S21
(ap=0)

az

b2

(2.1)
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Therefore, each "cell" or position in the matrix governs a
relationship between a different two of the entering‘and leaving
amplitude relationships for the two port. The matrix representation
lends better lends itself to a make sense description of what is
going on in the two port system. This is especially true since the
matrix operates upon inputs to produce outputs. It is easy to see
how individual inputs could be masked or omitted, and the effect such
omission has on the output quantities.

The letters a and b represent the amplitude of the
electromagnetic wave entering and leaving the two port network,
respectively. The "1" subscript indicates the left side boundary and
the "2" subscript indicates the right side boundary. The energy
within a wave is equal to the square of the amplitude. The square of
any of the scattering matrix coefficients yields the corresponding
energy in the wave. This relation parallels the scattering matrix
elements relationship to energy. The square of a matrix element will
yield the portion of energy reflected or the complement from unity of
the portion of the energy transmitted.

Fabry-Perot Scattering Considerations

Figure 2.2 illustrates the Fabry-Perot system existing within
the two mirrors which were previously shown in Figure 1. Figure 2.2,
utilizing a zig-zag representation of the multiple light reflections,
shows how each light beam has a portion of its energy reflected
within and a portion transmitted outside of the mirror boundaries.

In a physical sense, as shown in Figure 2.2, a light wave

entering from the left is partially reflected back to the source by
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mirror 1. The part which is not reflected is transmitted into the
middle or interstitial volﬁme between mirrors 1 and 2. As the
transmitted wave continues to the right, it arrives at mirror 2.
Here, similar to the case of the approaching wave with respect to
mirror 1, part of the light wave is reflected back in the direction
of mirror 1 while part is transmitted through and to the right of
mirror 2.

The light wave reflected back in the direction of mirror 1 is
again partially reflected back in the direction of mirror 2, and
partially transmitted back through mirror 1. This process, involving
each residual reflected light wave in the interstitial area,
continues in an infinite manner. Intuitively, the amount of light
reflectively propagating between mirrors 1 and 2 will depend upon the
reflectivity of the two boundaries.

Considering a beam of light entering the arrangement of Figure 3
from the left, the amount of total light propagating between the
mirrors can be calculated from the infinite series resulting from the
infinite numbers of reflections resulting between the mirrors. This
quantity is key to further analysis of the two mirror system. For
illustration only, Figure 2.2 shows a zig-zag line to enable view of
subsequent internal reflections. Although such a system could be
utilized and computed using the law of cosines to extract the
horizontal portion of the wave, further analysis will be based upon
an in line, here shown as horizontal, system to obviate the need for
angular considerations. Next, rules for treating the reflective and

transmissive propagation of an electromagnetic wave are examined.
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The Scattering Matrix for a Thin Dielectric

Before analysis of the Fabry-Perot system, the characterization
of what occurs regarding a light wave on reflection from and
transmission through a mirror, and propagation through space, will
need some explanation. Several properties may be assumed which will
govern these characteristics, including reciprocity and conservation
of energy. If mirrors 1 and 2 are both identically flat on both
sides, each mirror will react to approaching light energy from one
direction exactly just as it would to another direction.

In the specific case of light propagating in air toward a
dielectric surface, the reflection coefficient gamma will be
negative. The amount of mirroring on the surface of the dielectric
will control the magnitude of the reflection coefficient, regardless
of the side from which the surface of the dielectric is approached.

For a single mirror, a two port analysis would have Sj2
represent the energy in region 1 due to energy inputs from region 2,
while S91 represents the energy in region 2 due to input from region
1. Based upon experience and arbitrary reversibility of any given
mirror, it is intuitive that Sjp = S9;. Similarly Sjj represents the
energy in region 1 due to energy inputs from region 1, while Sg9
represents the energy in region 2 due to input from region 2, Again
reversibility of any given mirror leads to the observation that Sj; =
S99.

As was previously mentioned, the "amplitude" of the light wave
is related to the power in that the square of the absolute value of

the amplitude represents the power. Of the power incident from the
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left, the transmitted and reflected power must add to 1007 of that
power., Similarly, of the power incident from the right, the
transmitted and reflected power must add to 100% of that power. This
is also true for any two port system which does not store energy.
Stated in terms of the scattering parameters, the following equations

result:
S11 + S21 = 1 (2.2)
S99 + S12 = 1 (2.3)
In addition, for a dissipationless network, the absolute value
of the product of the members of each column must equal zero. Stated
another way,
S11 Si12 + S21 S92 = O. (2.4)
Since the absolute value of one number times another number can

be can be defined as one of the numbers times the complex conjugate

of the other number, the above equation (15) can be written:

S11¥ S12 +  S91% S99 = 0. (2.5)
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This leads to the observation that

S12 = -Sp1* S22 (2.6)
S11%*

Since Sy1 = S92, then Sy = —821*. The only way for this
relationship to be true is for Sy and Sp1 to be purely complex
quantities, that is to be preceded by the complex operator j. Sjyg is
the light wave in region 1 from and due to region 2 and Sp; is the
light wave in region 2 from and due to
region 1. Thus Sy9 and Sp; deal with the transmission of light
across the mirror boundary and will have magnitudes equal to the
transmission coefficient t, or in the case as here, where t is
complex, will have magnitudes equal to jt.

For reflectivity, since the tangential electric fields must
match at the interface, the phase shift is 180 degrees, causing a
sign change upon reflection. Sj; and S99, the reflection parameters
of the scattering matrix are each equal to -rj and -rp, respectively.

This results in a generalized scattering matrix for any single,

very thin mirror, as follows:

(2.7)

This results in a generalized scattering matrix for any single, very

thin mirror, and can be assumed to be valid for any two port.
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The Scattering Matrix for a Volume of Space
Insofar as propagation is concerned, a light wave changes phase
as it propagates, as does any other travelling wave. For propagation
normal to a frame of reference, the phase shift continues according

to the relationship:

d = 27@fnl = 2 7mal (2.8)

where f is the frequency, c is the speed of light in a vacuum, n is
an integer, 1 is the length traveled, and d is the shorthand
designation for facilitating the representation of the exponential
quantity. If 1 is the spacing between the mirrors then 2d represents
the total round trip distance. The repeatability of this function is
emphasized by the integer n. The phase of a light wave propagating

within the system is more fully represented by the quantity

-j2 wfnl/c -jd
e = e (2.9)

It is increasingly clear that there is an optimum mirror
spacing, or path length for a given wavelength of light. Conversely,
broadband light will have certain of its frequency components
selectively transmitted or attenuated through the mirrors of the
Fabry-Perot interferometer based on the relationship of the frequency
to mirror separation. Figure 2.4 illustrates this spatial

relationship.
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Figure 2.4. Stepwise Representation of Subsequent Reflections
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The Fabry-Perot Scattering Matrix

Referring to Figure 2.4, the two mirror system of Figure 2.2 is
illustrated without the potentially confusing angles. Each arrow
level represents a single directional event for a light beam. By
illustrating it this way, Figure 2.4 can be taken step at a time
illustrating the multiple reflections of a single light beam without
the confusing angular zig-zags used earlier to show multiple
reflections. In this way both the reduction in amplitude due to
multiple reflections, as well as the change in phase due to spatial
propagation may be illustrated. Although the mechanism of multiple
reflection and transmission would occur with a light beam of a non-
normal angle between two dielectrics, a Fabry-Perot will typically
utilize light at normal incidence.

Each subsequent level represents a different point in time of
the life of the beam due to reflectivity from a surface due to the
action of the beam above it. As is shown in Figure 2.4, light
entering from the left is designated as aj, this designation
indicative of the "amplitude" of the light wave. Light leaving the
system and propagating to the left is designated bj. Light leaving
the system at the right hand boundary is designated bp, while light
entering the system from the right is designated a3. This symbols
used are in general agreement with standard scattering parameter
notation.

As previously discussed, light reflecting from a surface has its
amplitude and phase multiplied by -r, the reflectivity coefficient

for that surface representing a diminution in amplitude and a 180
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degree phase change represented by the negative sign. Light
transmitted through a surface has its amplitude and phase multiplied
by jt, the transmission coefficient for that surface representing
either an increase or a diminution in amplitude and the j indicative
of a 90 degree phase change.

In Figure 2.4, all arrows pointing to the left of and away from
mirror 1 contribute to by while all arrows pointing to the right of
and away from mirror 2 contribute to bp. At the upper left hand
corner, a beam of light represented by aj enters from the left and
impinges upon mirror 1. This beam of light is partially reflected
away from and to the left of mirror 1 and multiplied by a factor -rj.
The resulting leftward propagating light beam has a total amplitude
equal to -rjaj.

The other portion of this 1igh; beam aj reaching the
interstitial space between the mirrors, and at a point just to the
right of mirror 1, is multiplied by jt; and has a total amplitude
represented by the product jtijaj. As the light beam travels from a
point just to the right of mirror 1 to a point just to the left of
mirror 2, a phase change occurs. This phase change is dependent upon
the length of separation between mirrors 1 and 2. This phase change
is represented by a multiplicative factor of e~Jd, The results in an
expression for the light wave at this point euqal to the
multiplicative product of jtlale‘jd.

Once the light wave impinges upon mirror 2, part of the light
wave is transmitted through mirror 2, leaving to the right of Figure

5, and takes on the additional factor jty. The resulting expression
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for this part of by is jtzjtlale‘jd, which, utilizing the
relationship j2 = -1, reduces to —tztlale‘jd. The portion of the
light wave reflected from mirror 2 beginning its propagation back to
mirror 1 takes on the additional factor of -rp. The expression for
this portion of the internal wave just to the left of mirror 2 is -
jro(ty)aje~Jd.  As the -jrotjajeJ4 light wave propagates to the
left, toward mirror 1, a phase change occurs by the factor e-Jd, The
multiplicative addition of this factor yields an expression for the
light wave at a point just to the right of mirror 1 equal to
-jrotjaje~2id,

Repeating the process once mirror 1 is reached, once the light
wave impinges upon mirror 1, part of the light wave is transmitted
through mirror 1, leaving to the left of Figure 2.4, and takes on the
additional factor jtj. The resulting expression for this part of bj
is -j2ro(ty)2aje=23d, which reduces to rp(ty)2aje~2Jd. The portion
of the light wave reflected from mirror 1 beginning its propagation
back to mirror 2 takes on the additional factor of -rj. The
expression for this portion of the internal wave just to the left of
mirror 1 is jrijrptjaje=2Jd., For clarity this may be written as
riro(jtja;)e=2Jd to illustrate that but for the left hand riry factor
and the right hand e=2Jd factor the kernel jtjay is the same as the
previous starting point just to the right of mirror 1. An additional
multiplicative factor of rlrze‘zjd will repeat for each round trip,
reducing the magnitude of each successive term. Since light
approaching mirror 2 acts essentially the same, the same result would

apply for a light wave aj entering from the left.
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Even though each subsequent level represents a different point
in time of the life of the beam due to reflectivity from a surface
due to the action of the beam above it, it would be helpful to treat
the Fabry-Perot interferometer in steady state, taking to account all
subsequent reflections. Since multiples of this factor will be
multiplicatively factored into the expression for each round trip,
and it continues to do so on a steady state basis, a steady-state
summation of the factors can be formulated.

The same set of reflectivities and distance phase shifts are
multiplicatively included as an addition to the total number of
multiplicative products in the expression. By grouping each
recurring set separately, a summation, describing each light beam in
figure 2.4 can be formulated.

However, to insure that a complete round trip for each term is
precisely included, the reference plane which was utilized above, and
which was infinitesimally to the right of mirror 1, is selected. The
total internal light beam, which is the sum of all internal light
beams propagating to the right is:

00
-j2d
a = z (r1rpe I jt1 ag (2.10)

m=

where a] is the amplitude of the light beam incident upon the system

from the left. This expression is exactly equal to the following:
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a = jt1 a1 (2.11)

The proof for this exact equivalency can be verified by computer
or from any number of math handbooks. With the total interstitial
"a" field determined, all other fields are determinable with
reference thereto. The total internal "b" or leftward propagating
field will consist of the total internal "a" field times the
reflection coefficient at mirror 2, namely ro, along with the
appropriate phase factor for the reference position. The

interstitial "b" field, again at a reference point just to the right

of mirror 1, is as follows:

o
]
[y
N

1 (2.12)

All of the other quantities can now be easily computed with
respect to equations (2.11) and (2.12). Note for emphasis that
equations (2.11) and (2.12) are the "a" and "b" fields internal with
respect to the Fabry-Perot interferometer, and they are taken not
everywhere, but at a point just to the right of mirror 1 as
previously specified. The external fields are dependent upon the

internal fields as well as reflection from the extermnal surfaces.
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Next, to construct the scattering matrix for the Fabry-Perot
system, we will analyze a light beam entering at the left, and its
effect on by and by. The first contribution to bj comes from the
reflectivity of the outside of mirror 1, namely -rjaj. Light then
entering the interstitial space between mirrors 1 and 2 is jtjaj, and
it proceeds to form the multiple reflections referred to above.

For simplicity it is advantageous to refer to the total
interstitial "b" field due to multiple reflections at the same
reference point, namely just infinitesimally to the right of mirror
1. The portion of the "b" field which will propagate back through
mirror 1 will be multiplied by the "through glass" scattering
parameter referred to above as jtj.

So, multiplicatively combining the interstitial b field with
jt1, and additively combining this quantity with the wave reflected

from the surface of mirror 1 will yield:

by = -r] aj + 1 2 e a1 (2.13)

Recall that all reflections from mirror 2 in the direction of region
1 were taken to account in the computation of the total interstitial
fields. Continuing, to further simplify this result, the first term
on the right hand side of the equaéion is multiplied in the numerator
and denominator by the denominator of the interstitial "b" field to

yield:
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-r a + r2r a e"j?‘d + t2 r a e—j2d
by = 11 1 2 1 1 21 (2.14)

1 - r r e-j2d
1 2

Recognizing the common term for the two rightmost quantities in

the numerator yields:

by = 1 1 2 1 1 1 (2.15)

Since the square of the reflectivity indicates reflected energy,
and the square of the transmissivity indicates transmitted energy,
and since the reflected and transmitted energy must sum to unity for

the same reference plane, i.e. r2 +t2 = 1, we then have:

-j2d
-r a + r a e
by = 11 2 1 (2.16)

1 - r r e-j2d
1 2

Further, extracting the aj term will better illustrate the matrix

term:

b1 = 1 2 al (2.17)
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The above term to the left of the aj term occupies the Sj; position
in the scattering matrix since it describes the contribution to bj
from the aj input.

Similarly, the by term as a function of aj can be computed from
the internal "a" field of equation (2.11). As discussed above, and
beginning just to the right of mirror 1, a factor of e=Jd will be
multiplied to reach mirror 2, and a factor of jty for transmission
through mirror 2, will be applied to the total internal "a" field of

equation (2.11). This yields:

by = j t1 a1 jtg e-Jd (2.18)
—j2d
l-r r e
1 2

The j x j factor forms a -1, and, extracting the aj term as was

done above, reduces equation (2.18) to:

by = - t] t2 e-jd al (2.19)

The portion of the equation to the left of aj forms element Sj7 of

the scattering matrix, the portion of by dependent upon aj.
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The remaining portions of the scattering matrix, including Sj2
and Sy9, involve those portions of by and by attributable to inputs
at ap. Similar to the equations beginning with equation (2.11) and
(2.12), and especially since the Fabry-Perot works the same, no
matter from which side approached, two new equations can be written.
These two new equations, to show the similarity between the
computations above for S;; and Spj and those now made for Sjj and
S92, will chose a reference point just to the left side of mirror 2.

men

The quantities referenced to that point will carry a primed

designation. The "a'" field is still propagating to the right and

the "b'" field is still propagating to the left.

b' = j t2 ap (2.20)
—32d
l1-r r e J
1 2

With the total interstitial "b'" field determined, all other
fields are determinable with reference thereto. The total internal
"a'" or rightward propagating field will consist of the total
internal "b'" field times the reflection coefficient at mirror 1,
namely ry, along with the appropriate phase factor for the reference

osition. The interstitial "a'" field, again at a reference point
p g P

just to the left of mirror 2, is as follows:

, jt r -j2d @&
a = 2.1 e 2 (2.21)

l-r r e—JZd
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The portion of by attributable to ap, using (31) on the right side
is:
t2 r  -j2d
e

bo = -r9 ap + 2 1

l-r r -j2d
1 2¢

as (2.22)

Again continuing, to further simplify this result, the first term on
the right hand side of the equation is multiplied in the numerator
and denominator by the denominator of the interstitial "a'" field to
yield:

e—j2d 2 r a e—j2d

a + t
by = 2 2 2 1 2 2 1 2 (2.23)

1 - r r e-j2d
1 2

Again recognizing the common term for the two rightmost quantities in

the numerator yields:

-r a + r a emj2d ( 2 + £ )
by = _2 2 1 2 2" 2 (2.24)

1 - r r e-j2d
1 2

Again, since the square of the reflectivity indicates reflected
energy, and the square of the transmissivity indicates transmitted
energy, and since the reflected and transmitted energy must sum to

- unity for the same reference plane, i.e. r2 + t2 = 1, we then have:

-j2d
-r a + r a e
by = 2 2 1 2 (2.25)

1 - r r e-jad
1 2
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Again, extracting the ap term will better illustrate the matrix term:

e—j2d
by = 2 1 ag (2.26)
1 - r1 r e-j2d

The above term to the left of the aj term occupies the Spj position
in the scattering matrix since it describes the contribution to by
from the ap input.

Similarly, the by term of a function of aj can be computed from
the internal "b'" field of equation (2.20). As discussed above,
since we, in the latter case begin just to the left of mirror 2, the
factor of e~J4 will be multiplied to the quantity in equation (2.20).
Only an additional factor of jt] for transmission through mirror 1,
will need be applied to the total internal "b'" field of equation

(2.20). This yields:

by = j t1 ag jtg e-jd (2.27)
-j2d

The j x j factor forms a -1, and, extracting the aj term as was

done above, reduces equation (37) to:

by = - t] ty e-jd a (2.28)
-j2d
l-r r e
1 2
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This equation forms element Syp of the scattering matrix, the portion
of bj dependent upon ap. The full scattering matrix for the Fabry-

Perot, collecting equations (2.17), (2.19), (2.26), and (2.28), is:

-r + r e_:j2d . .
by 1 2 - ty t2  e-id a)

1 - r r e-j2d 1 - r r e-jad

1 2
= (2.29)
-j2d
. -r + r
by | - t] t2  eid 2 1 a
- -j2d - -j2d L -
1 ryry,e J 1 r,rye J

At first blush, a sign difference between S;; and Sg) indicated,
but the rj and r) positions are physically simply reversed. Since
light approaching mirror 2 is reflected and contributes -rpap to the
bo quantity, the equivalency of the above equation is seen.

Although each mirror is considered to be infinitely thin, and
that in a physical realization of a Fabry-Perot system with thicker
mirrors, the mirrors themselves form resonant cavities. However, the
resonant system will be dominated by the interplay between the actual
mirror surfaces. Since the mirrors are considered to be infinitely
thin, the values of t, the transmission coefficient will always be
less than unity since the light wave is never considered to be
propagating through a volume of lesser impedance/greater optical
density such as glass, into a volume of greater impedance/lesser
optical density such as air. Therefore, each additional

multiplicative term diminishes the result.



CHAPTER 3

THE TRANSMISSION MATRIX GENERALLY

The order of the elements within a transmission matrix differs
from that of a scattering matrix. This is to enable the transmission

matrices to be multiplicatively joined to describe a system.

b1 T3 Ty2 bo (3.1)

aj Ty1  T22 ap

Compare this matrix system with the matrix of equation 2.1:

by S11 S12 al (2.1)

bo S21 S22 a

In equation (3.1), the input/output interface, say interface 2,
of a two port system in terms of its input ag and its output bp can
be operated upon by the transmission matrix of equation (3.1) to
yield a "new" or updated input/output interface 1 with a next
adjacent input/output pair, namely by and ap. Many transmission
matrices may be sequentially multiplied against an initial
output/input pair by/aj to yield a sequential series of intermediate
output pairs. In this way the system states are known at each point.

33
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Alternatively, the matrices may be multiplied together to form a
large matrix which may then be multiplied against an initial
output/input pair bp/ag to yield the final output bj/aj pair. This
is especially useful where the intermediate states are not required
to be known. A larger matrix utilized in a single matrix
multiplication can be performed more rapidly, conserving computer
time.

The order of multiplication of the matrix is important.
Reversing the order of the matrices will cause a non-sense
multiplication of the elements. Even though several matrices may be
multiplied to make a single larger matrix, each multiplication step
still "processes" the input to the system to several intermediate
stages, the larger matrix utilizable to perform the whole "process"
at one time.

Although the transmission matrix also has a "sense" orientation
in that each component represents a contribution from identifiable
sources, and as mentioned above, the transmission matrix does not
lend itself readily to an experimental or logical manipulation in
isolating the sources of the outputs. Tjj, for example represents
the portion of energy in bj due to aj. Ty, similarly represents the
portion of energy b; due to by, a relationship which is not directly
logically apparent. However, note that the simple identity
relationships cannot be in a real sense stated for each transmission
coefficient as was the case for the scattering matrix. This is
’because the dependencies are neither logical, nor physically

isolatable.
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In the scattering matrix equations, the input to a two port
system could be blocked off to allow the testing of one of the
outputs in terms of one of the inputs. The blocking off of an input
is a physically realizable phenomenon. For the transmission matrix,
the definition of Tyj would involve the "shutting off" of a two port
output.

The shutting off of an output in a physically realizable sense
cannot be accomplished easily, or without interfering with the system

in some other way, or without introducing a "new"

system portion to
complicate the process. The same holds true for the other
transmission matrix members. This is why the transformation from
scattering matrices, with their "make sense' and physically
realizable elements, to transmission matrices is so important and
valuable.

Most obviously, note that scattering matrices give the outputs
in terms of the inputs. The transmission matrices give the
input/output pair for a single port by operating on the input/output
pair of the next adjacent port. The ability to compute a
transmission matrix from a scattering matrix, especially for matrices
as large as equation (39) and larger can facilitate the analysis of a
system, particularly the Fabry-Perot.

To derive the transmission matrix from the scattering matrix,

the equation formed from row one of scattering matrix 12 is first

utilized.

by = Sy1 a1 + Si2 az (3.2)
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Solving for aj yields

ap = b1 - S11 21 (3.3)
S12 S12

Utilizing the equation formed from row two of scattering matrix

equation 2.1, namely

bp = Sp; a1 + Sy ap (3.4)
yields the following expression:
by = Spja] + S22b1 - S22 811 a1 (3.5)
S12 S12

Next, multiply the first term of equation 3.5 by S17/S73:

by = S12 52181 4+ Sz22b1 - S22 511 a1 (3.6)

S12 S12 S12
Next, collect the terms having a common aj factor.

by = (512 521 - S22 S11) a7 + S22 b1 (3.7)

S12 S12
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The two right hand terms of equation (3.7) form the Tyj and Typ
elements of the transmission matrix. To find the T9j and Tgj

elements of the transmission matrix, next ap is computed in terms of

a] and by utilizing the relationship of equation 3.2.

by = Si11 a1 + S12 ag (3.2)

Equation 31 can be directly manipulated to yield

ap = ~S112a o+ b1 (3.8)

S12 S12

By collecting the solutions for by and ap in equations (3.7) and
(3.8), the solutions as ordered above exactly fit the transmission
matrix format in terms of both the matrix operated upon and in terms

of the generated matrix.

by (512 821 - S22 S11) S22 by
812 512
= (3.9)
a2 S 1 a]
512 512

The Serial Joining of Transmission Matrices
As previously stated, transmission matrices for a system may be
serially joined to yield the total system output. The large

composite matrix gives the output for a given input, but a serial
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treatment of the smallest matrix unit on a given output sequentially
yields the intermediate states of the energy in process. The next

equation illustrates a "chain" of smaller transmission matrices.

byl |T11 Ti2 T11 Ti2 T11 T2 T11 Ti2 b
_ (3.10)

ajl |T21 T22 To1 T22 To1 To2 To1 To2 ap
z y X w

Fach matrix w, x, y, and z, in sequence, treats an initial input
from port 1. Note that the flow of the signal or energy will be from
port 2, through device w, x, y, and finally z. It may appear that
the matrix of equation (3.10) was written backwards, but it is
written in the order of multiplication. Matrix w is multiplied
against the by ap output/input matrix, then matrix x is multiplied
against the result, then matrix y, and finally matrix z is multiplied
against that result to form the final result. As a check, smaller
transmission matrices formed by manipulation of the small scattering
matrices should form the same larger transmission matrix formed by
manipulation of the large scattering matrix.

Small Element Matrix Transformation

In equation (2.7) the scattering matrix for a thin dielectric was

- set forth., Equation (3.9) puts forward the transformation equation

for transforming a scattering matrix to a transmission matrix.

b1 -r jt aj

= (2.7)



b2

az

—

(512 S21 - S22 S11)

S12

S22

S12

— T

al
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(3.9)

Inserting the elements of (2.7) into (3.9), for a single mirror, say

mirror 1, yields the transmission matrix for a thin dielectric:

az

_
(dt1it1 —(rhry)) “T
jt1 jt1
1 1
jt1 jt1

|

[~ T

ajl

(3.11)



Reducing further yields:

az

" Since t2 =1 -

yields:

az

Similarly for mirror 2, equation (3.13) becomes:

2

2

( -t1 -rl)

jt1

rl

jt1

it

jt1

al
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(3.12)

r2, T11, the upper left term becomes unity, which then

jt1

r1

it1

jt1

it

al

(3.13)
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- — O
bo -1 =r b1
jt2 jt2
= (3.14)
ap 2 1 a1
jt2 - jto

The relationship between phase and space described in equation
(2.9) can be stated in terms of a scattering matrix should be
transformable to a scattering matrix by the application of simple
logic. As recited above in equation (2.1), the matrix is usually

written in the following form:

by S11 S12 ] |a1 (2.1)

bo S21 S22 ap

Consider the generalized scattering matrix at Figure 3 to be a
section of free space having a left boundary at port 1 and a right
boundary at port 2. For this section of free space, there is no
reflection at the space boundary. Light entering from the left, aj,
continues through the volume within the boundaries of the free space
section boundary, emerging as by, Likewise, light entering from the
right, aj, continues through the volume of space within the

boundaries of the free space section boundary and emerges as bj.

*
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Since 100% of the amplitude is transmitted straight through,
this sets the relationship between aj and by, and between ap and bj
as unity. This corresponds to the Sp; and the Sj2 entries,
respectively, of the scattering matrix shown in equation (2.1).
However, during the propagation through the space between the two
ports, a phase change occurs. As stated in equation (2.9), this
phase change is equivalent to e~Jd, which has an absolute value of
unity.

Similarly, there is no reflection at the boundaries meaning that
no beam aj éver becomes or contributes to bj. No beam ap ever
becomes or contributes to by. This means that the absolute value of
the relationships between aj and bj, and between aj and by is zero.
This corresponds to the S and the Sg) entries, respectively, of the
scattering matrix shown in equation (2.1).

The following matrix results:

by 0 e3d aj (3.15)

bo e—Jjd 0 ag

Next, utilizing equation (3.9) for transformation from a

scattering to transmission matrix, the following matrix results:

— - — - - -
by (e~jd e=Jd - (0) (O)) 0 b]
e‘jd e‘jd
= (3.16)
ap 0 1 a1
e—Jd e-Jd
R | - I
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Reducing further yields:

b1 e=Jd 0 al (3.17)

by 0 etjd a

which is the expression for a transmission matrix for a section of
free space.
The Fabry-Perot Transmission Matrix
Again taking equation (3.9), equation (2.29) is inserted
therein. First, for ease of explanation, the factor 1/(1—r1r2e‘j2d)

is factored out of equation (2.29).

1 - r r e-Jj2d (3.18)

Plugging the matrix portion of equation (3.18) into equation (3.9)
will require that the left side factor of equation (3.18) be
included. To facilitate this, equation (3.9) is again illustrated,

and the computations will be performed one element at a time.
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o - P — r' -
by (512 S21 - S22 S11) S22 by
512 S12
= (3.9)
ap 511 1 al
512 812
b J e po— -

The whole of equation (3.18) into equation (3.9) is the following matrix:

r
(t2)2(t1)2e~32 - ((ryrp)-((r1)2e~32d)~((rp)2e~32)4(rirpe=34d) ro-riej2d
(1 -ryry e—j2d)2 (1 - riry e-j2d)2 (1—r1r2e“j2d)
- t] t2 e-3d t] t2 e-jd
(1 - ryrp e732d) (1-ryry e~32d)
1l + r2 e 94 .

(1 -rr9 e—Jj2d)

t] t2 e-3jd t1 t2 ejd

(1 - ryrp e~j2d) (1-r1ry e~j2d)

(3.184)

The upper left, or Ty] element of the transformation gives:
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(t2)2(t1)2e7320 - ((r1r9)-((r1)2e7324)~((rp)2e~32d)+(r rp~34d)

, . (3.19)
(1 - rjry e~j2d)2 (1 - ryry e~j2d)2

- t] tg e—3d

(1 - rjry e~J2d)

Dividing the large common factors yields:

(t2)2(t1)2e~j2d —  ((r1r)-((r1)2e32d)—((rp)2e~32d)4(r1roe=34d)

(1-ryroe~i2d)(-t1t2 e-jd) (1 - ryry e~J2d)(-t1t2e-jd) (3.20)

Both terms have the same common denominator. In addition, to enable
cancellation, the t terms in the numerator will be substituted for by using
the relationship t2 =1 - r2, This will put the final result in terms of the

reflection coefficients.

(1—r§)(lgr1)e‘j2d - ((r1r9)-((r1)2e~32d)-((rp)2ei2d)+(r rpeJ4d)
(3.21)

(1 - rjry e~J2d)(-t1toe-jd)

Next, the term in the left half of the numerator is expanded, and the
parenthetical expressions in the upper right half of the numerator are

eliminated with the appropriate sign assignments.
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Y '

2 2 22 . 2 . 2 . .
(1 - rg -r] + ror] Je =324 — riry + r{eJ2d 4 rpe-j2d rlrze“JAd
(3.22)

(1 - ryrp e~j2d)(-ti1toe-jd)

Noting the two sets of like terms, and performing the cancellation
gives:

e'j2d + ror] e "jZd -riro —rlrze‘jAd
(3.23)

(1 - ryry e~J2d)(-t1t2e-3d)

Noting that the numerator can be factored into two multiplicative

factors, one of which matches the denominator yields:

(e=32d - ryry) (1 - ryrp e~j2d)
(3.24)

(1 - ryry e~j2d)(-t1t2e-3d)

Cancelling:

(e=32d - rqry)
(3.25)

(-t1t2e-3d)



Dividing by e—Jd yields and moving the bottom negative sign:

(-e—Jd 4 r1r2e+jd)

(t1t2)

Next the upper right, or Ti2 element is computed

rz—rle‘jZd

t] t2 e-Jjd

(1-rqrp e~j2d)

Cancelling like denominators, and dividing by e—jd gives:

roetjd_rye-Jjd

t1 t2
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(3.26)

(3.27)

(3.28)

Next, the lower left, or Tpj element of the transmission matrix is

treated:

rl + r2 e--J2d

(1 -ryrp e~j2d)

t] t2 e-jd

(1 -rrp e—Jj2d)

(3.29)



48

Cancelling like denominators, and dividing by e—Jd gives:

-r1 etid 4 g o3d
(3.30)
t] 2
Finally, the lower right transmission element, Tp9 is:
-1
(3.31)
t] t2 e-jd

(1 - ryrp e~j2d)

Inverting and negativing the denominator into the numerator gives:

(riro e—j2d _ 1)

' (3.32)
t] t2 e-jd

Dividing by e~Jd gives:

(riro e~Jjd - etjd)
(3.33)

t1 t2

Combining all of the elements of equations (3.26), (3.28), (3.30),

and (3.33) of the transmission matrix for the Fabry-Perot yields:
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R

(-e~Jd 4+ ryrgetid) (roetid_rie=Jjd)
t1 t2 t1 t2
. . . . (3.34)
-1 etid |, ~3d (rirg e~Jd — etjd)
t1 t2 t] t2
S —

In order to visualize how the reflectivity, which of course
determines the transmissivity, affects the transmission matrix, the

final set of t's may be stated in terms of their respective r's.

—

—
(-e—Jd + r1r2e+jd) (r2e+jd—r1e‘jd)
2 2 2 2
((1-r7)(1-rp))+> ((1-r1)(1-rp))+>
. . . . (3.35)
rl etid + r2 e_Jd (rirp e~Jd - etjd)
2 2 2 2
((1-r1)(1-rp))-> ((1-r1)(1-rp))->
i —

As a check, the individual transmission matrices (3.13), (3.14),
and (3.17) can be multiplied together to yield equation (3.35).
Although the Fabry-Perot can accept light into either port, the
matrices will be arranged to treat port 1 as an input since it will

be less confusing when the single fiber Fabry-Perot is considered.



bo -1 r2
jt2 jt2
r2 1
ap jt2 jt2
L ] _
(3.13)
- -
bo -1 —I2
jt2 jt2
rl 1
ap jt2 jt2
|
(3.13)
— o~
bo e—jd —r1r2e+jd
-t t2
a -T2 o—jd 4 r1etid
-t t2
L 4 L

The negative signs are due

b9 _e—jd +riroe+id
t1] £2
Ty o—jd _ rietid
a t] £2
R L
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— -1 — ¥
. -1 -r1 || by
e=Jd 0 ity jt1
(3.36)
. r1 1
0 etid jti1 jt1 |l a1
(3.14) ~ (3.17)
B . .— '_—1
—e—Jjd  -T1e-jd by
jt1 jt1
(3.37)
riet+jd etid
jt1 jt1 al
—_ — k.
(intermediate)
. ]
+rie-jd _roetjd b1
-t 2
(3.37)
-r]r2e—Jjd + +jd
-t t2 al

to the j2 factor. Consolidating signs:

= — T
—T1e—Jjd 4roetid b1
t] 2
(3.38)
riroe-jd - e+jd
t] t2 ai
- E—

Note that equation (76) agrees with equation (71), and that the

scattering matrix for the Fabry-Perot is derivable directly, or from

the individual transmission matrices.



CHAPTER 4

SINGLE OPTICAL FIBER OPERATION

After considering the parameters outlined above, and considering
a two mirror interferometer with a single fiber approach, a condition
is necessary in order for the system to work.

To illustrate how a single fiber interferometer might be set up,
first, consider a system in which the first mirror, mirror 1, has a
reflection coefficient greater than zero and less than unity, and
where mirror 2 has a reflection coefficient of unity. In terms of
the total energy, it is clear that such a sensor returns 100% of the
energy all the time. This is, of course, excluding losses. If 1007
of the energy returns, the interferometer cannot operate in the
standard Fabry-Perot mode. There would be no discernment between
differing spacing of the mirrors.

Referring to equation (2.29), and considering aj to be zero
since mirror rop is totally reflecting and no light energy may enter,

and ignoring by, only the upper left term of the matrix is relevant:

e
by = 1 2 aj (4.1)
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The rp term is unity. Dividing by aj to get a ratio yields:

by -r + e-jZd
= 1 (4.2)

al 1 - T e—Jj2d

A cursory analysis of equation (4.2) indicates that where 2d is
equal to 2 , the ratio is one exactly. For half that value, the
ratio is equal to negative one. For /4, the ratio varies from

1 / 0 degrees for r] equal to zero to 1 /180 degrees for rj equal
to unity. Thus all of the energy is returned, and the only
difference is in the phase of the light returning. Due to the
coherence length of light used, the average "length" or time duration
of a single photon would make measuring the phase difference
virtually impossible. Each photon, or a composite of all photons
would have to be phase measured upon transmission and return. Such a
system is not conducive to simple, steady-state operation.

One way to preserve the Fabry-Perot mechanism is to allow mirror
2 to be partially reflective, to allow energy to escape the
interferometer beyond mirror 2. Such an escape would need to be
guarded, such that no random light energy entered mirror 2. This
would entail covering the surface of mirror 2 with a light absorbiﬁg
material, or surrounding mirror 2 with a non-reflective surface. The
surface would additionally need to be in a position to dissipate
heat. Instead of using the light transmitted through and beyond
mirror 2 as a measure of mirror separation, the light reflected back

to the source would be utilized.
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LIGHT ENERGY DETECTOR

Figure 4.1. Single Fiber Interferometer Schematic
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A directional coupler capable of coupling light propagating away
from the interferometer could be used as an indicator of relative
mirror position. Such a device is shown in schematic form in Figure
4,1 on the previous page. An alternate embodiment could include a
colored mirror 2 along with a mirror 1 colored on the inside, both
also partially reflective. Mirror 1 would be a color neutral mirror.
The internal "a" field due to multiple reflections against mirrors 1
and 2 would then be of one color.

Instead of a simple fiber optic directional coupler, a
wavelength division multiplexer could be used. For the standard
Fabry-Perot, the energy return consists of both the reflection from
the outside mirror 1, which is a constant, and would be color neutral
and the reflections due to the internal field. The constant energy
reflected due to mirror 1 retains a constant minimum energy
difference regardless of the mirror spacing. This will increase the
required sensitivity for the electronic detector utilized to detect
changes in mirror spacing. The increased sensitivity will be
necessary to detect the difference between the energy peaks and
valleys. Light of a given color reflected by mirror 2>wou1d build
into an internal "b" field of a constant color. This constant color
light, even though propagating back to the detector along with light.
of the original transmitted color, will be selectively split off by
the wavelength division multiplexer, and thus be measured directly.
In this manner, the color modified light can be measured in the
absence of light reflecting from mirror 1, and the resolution of a

given detector can be similarly increased.
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Practical Considerations

In the optical fiber, all of the light does not propagate along
its axial center in a straight line. Neither does all of the light
travel in a straight line as it propagates along the fiber. Light
"bounces" or reflects from side to side as it propagates through the
fiber. As a result, at the "gap" between mirror 1 formed by the
polished end of the fiber and mirror 2 formed by a planar reflective
surface displaced by the fiber, not all of the light will propagate
normal to mirrors' planar surfaces.

The portions of light which manage to leave mirror 1, travel to
mirror 2 at an angle, reflect and re-enter mirror 1 will have
traveled a longer path than the portion of the light which propagated
between the mirrors at a normal angle. A greater path length favors
a slightly lower frequency component. This deviation will tend to
blur or make less sharp the boundary between the wavelengths of light
whose propagation through the Fabry-Perot are favored versus those
wavelengths of light whose propagation is suppressed.

The degree to which a non-normal portion of light affects the
total result is, however, inversely proportional to the anglular
deviation from normal incidence of the light leaving mirror 1. This
is because a higher angle will cause a lesser number of multiple
reflections between the mirrors 1 and 2 before the light wave veers
to a point where it cannot be recaptured by the mirrors. For
example, a small angle deviation might support several hundred
internal reflections before veering off as a loss. A larger angle

deviation might only allow 2 or 3 internal reflections before veering
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off as a loss. Therefore, for larger angles, the path length
difference with respect to normal incidence will be much greater, but
the effect of smaller numbers of internal multiple reflections will
mitigate the effect. For smaller angles, the path length difference
with respect to normal incidence will be much less, but the effect of
larger numbers of internal multiple reflections will enhance the
effect.

Truncating these two offsetting effects is a limitation known as
the cone of acceptance. In order for light to propagate along a
fiber optic line, the angle of propagation with respect to the
internal wall of the fiber must be sufficiently small for total
internal reflection to occur. Larger angles with respect to a line
parallel to the walls cause losses. Due to Snell's law, the angle of
incidence on the end of a fiber optic line determines the propagation
angle within the fiber. An angle greater than this minimum angle
represents a loss, and therefore a cutoff.

An estimate of the maximum percent deviation due to this non-
ideality may be made once the maximum angle of acceptance and Fabry-
Perot separation is known. In Figure 4.2, a section of fiber is
shown. The fiber is made of a material having index of refraction nj
and surrounded by a material (or no material) having an index of
refraction nyp. The end of the fiber forms mirror 1, while mirror 2
is shown to the left. Angle a] is made with a line axially parallel
to and outside the fiber. Angle aj is made with a line axially
parallel to and within the fiber. Angle ap differs from angle aj due

to Snell's law and the difference in refractive index between the
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Figure 4.2. Cone of Acceptance Schematic
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space between the mirrors and the inside of the fiber. An angle aj
with respect to the inner wall of the fiber is 90 degrees different
from the angle aj.

The angle a3 is the total internal reflectance angle, or the

critical angle given by:

Sin a3 = n9/nj (4.3)

The angle aj is related to angle ap by Snell's law, where the index

of refraction for air is 1.0 and is:

1.0 sin aj = nj] sin ajp (4.4)

As previously stated, the 90 degree difference between ay and a3, in

equation form is:

ag = 90 degrees - aj (4.5)

Using the relationship that cos? + sin? = 1, cos ap = sin a3 =

np/ny, yields:
sin aj = nj32- np? (4.6)
So, the index of refraction of the fiber and the material or

lack thereof surrounding it determines the angle of acceptance aj.

As an example for illustrative purposes, consider a 100 micron
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diameter fiber has a polished end forming mirror 1 separated from a
mirror 2 having an excessive diameter, by 500 nanometers. Consider
the optical fiber to have a refractive index of n} = 1.6 and the
outer cladding to have a refractive index ny = 1.5. According to the
equation above, aj] becomes 33.8 degrees. A 33.8 degree angle, over a
base length of 500 nanometers forms a hypotenuse of 601 nanometers.

This means that light may enter the fiber at angles of deviation
from normal of from O degrees experiencing a mirror spacing of 500
nanometers to 33.8 degrees experiencing a mirror spacing of 601
nanometers. This path difference is a 16.8% maximum relative
pathlength difference. It is not plus or minus since the path length
can increase, not decrease. Given that light should be uniform
across an array of angles whose average is equal to 33.8 degrees, the
average pathlength difference should see a 16.9 degree angle
corresponding to a 522 nanometer hypotenuse for a right angle between
the mirrors. This relative pathlength difference is 4.45%, about one
fourth of the maximum calculated above.

The attenuation occurs both with respect to light leaving the
fiber at an angle greater than 33.8 degrees and light attempting to
enter which is greater than 33.8 degrees. The cone of acceptance
would at first appear to dictate the size of mirror 2, but it must be
noted that the worst case for reflection back into the fiber would be
a photon leaving one edge of the fiber, or the polished edge of
mirror 1, reflecting across the center. Obviously, any light from
one edge propagating concentrically away from the center axis of the

fiber will be lost in any event. However, light from one edge which
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propagates normally with respect to the mirrors should have the size
of thé mirror opposite of equal diameter to permit the return trip.
Therefore, the size of mirror 1 and mirror 2 will be approximately
equal with no significant increase in loss.

Given that the diameter of the fiber is relatively larger than
the gap, an expansivéfarea is available to accept light, and the
angle of acceptance governs light entering at any point, not just
near the center or edges. Moreover, remembering that light
propagating down the fiber toward mirror 1 is Subject to the same
internal reflection angle limitation, it is clear that all of the
light avéilable for propagation between the mirrors should originate
at an angle no greater than the 33.8 degree "cone of light". If this
is the case, the loss can be computed by considering the 33.8 degree
frusto-conical volume of light between the mirrors, and finding the
ratio of mirror 1 to the area illuminated at the 500 nanometer
separation, given the 33.8 degree "spread" which will be lost.

The sine of the 33.8 degree angle multiplied times the 601
nanometer hypotenuse of the right angle formed by the spread will
give the additional radius of lost light via missed illumination of
mirror 2. This represents an additional radius of 334.3 nanometers.
For a fiber diameter of 100 microns, and assuming even illumination,
the illuminated diameter at 500 nanometers becomes 100.668 microns.
The percentage recaptured light is the square of the radius of the
fiber divided by the square of the radius of the illuminated area.
Here this quantity is (50 microns)z/(50.334 microns)z, or .9867. So,

the efficiency is about 98.67%. Again, this assumes that the only
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light available for multiple reflection is within a 33.8 degree cone
of light. Also, since the average angle should be less than 33.8
degrees, this efficiency is conservative.

The assumptiqn that all light leaving the fiber is within this
cone of light aids in introducing the last source of error, that of
truncation of the infinite multiple reflections due to light waves
angling off of the mirrors. For normal propagation, an infinite
number of reflectioné is possible to a point where the quantum of
energy necessary to support a photon's existence falls below its
minimum threshold. Light, even if it enters from the edge of the
fiber and propagates toward the center will re-reflect a finite, even
if large, number of times.

In the above example, given an average angle of 16.9 degrees and
a cross diameter travel of 44 nanometers per round trip reflection
over the diameter of the 100 micron diameter fiber, the number of
reflections would be the former length divided into the latter
diameter. This equates to 2272 trips. Similarly the maximum angle
of 33.8 degrees and a diameter travel of 668.6 nanometers per round
trip equates to 149 round trips. An average 2272 reflections, and
using a .5 reflectivity for the interferometer creates an error
smaller than 1099, The 149 round trip case creates an error smaller
than 10‘89. This error is negligible compared with illumination loss
due to the cone of acceptance/ cone of illumination loss.

Conclusion
As the above computations indicate, the Fabry-Perot

interferometer is readily characterizable in terms of its energy and
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phase. As is implied, the maximum use of this device may be had
where devices and techniques capable of the resolution of small
energy differences is available.

In addition, the above derivations, scattering matrices and
transmiséion matrices are universal in that they do not relate to one
particular material. Any material need only have its reflectivity
and transmissivity characterized to be utilizable to form a Fabry-
Perot interferometer. Aﬁ understanding of such energy matrices aids
in the physical understanding and predications of the performance of

the device, inviting further experimentation and configuration

building.
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